問題文全文(内容文):
$\displaystyle \int_{-1}^{1} \displaystyle \frac{x|x|(2x^2+1)e^{2x^2}}{2x(xe^{x^2}-1)+e^{-x^2}} dx$
$\displaystyle \int_{-1}^{1} \displaystyle \frac{x|x|(2x^2+1)e^{2x^2}}{2x(xe^{x^2}-1)+e^{-x^2}} dx$
単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} \displaystyle \frac{x|x|(2x^2+1)e^{2x^2}}{2x(xe^{x^2}-1)+e^{-x^2}} dx$
$\displaystyle \int_{-1}^{1} \displaystyle \frac{x|x|(2x^2+1)e^{2x^2}}{2x(xe^{x^2}-1)+e^{-x^2}} dx$
投稿日:2023.07.15