【数Ⅲ】積分法:sin^8 xの積分をスマートに解く - 質問解決D.B.(データベース)

【数Ⅲ】積分法:sin^8 xの積分をスマートに解く

問題文全文(内容文):
$sin^8 x$の0から$\dfrac{\pi}{2}$の範囲の積分を求めよ
チャプター:

0:00 OP
0:24 sin^2 xの積分
1:59 sin^8 xの積分
8:28 まとめ
8:34 ED

単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$sin^8 x$の0から$\dfrac{\pi}{2}$の範囲の積分を求めよ
投稿日:2021.12.08

<関連動画>

#筑波大学(2018) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\sqrt{ 3 }}^{\sqrt{ 3 }} \displaystyle \frac{1}{x^2+3} dx$

出典:2018年筑波大学
この動画を見る 

大学入試問題#452「解き方は色々とあるかと思います」 横浜国立大学(2002) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#対数関数#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{a} log(a^2+x^2) dx$

出典:2002年横浜国立大学 入試問題
この動画を見る 

大学入試問題#68 京都大学(2012) 部分積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{\sqrt{ 3 }}\displaystyle \frac{log\sqrt{ 1+x^2 }}{x^2}\ dx$

出典:2012年京都大学 入試問題
この動画を見る 

11神奈川県教員採用試験(数学:11番 重積分)

アイキャッチ画像
単元: #積分とその応用#定積分#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{11}$ $D=\{ (x,y) |x \geqq 0 , y \geqq 0, x+y \leqq 1 \}$
$∬_Dx^2+y^2 dx dy$を求めよ。
この動画を見る 

福田の数学〜早稲田大学2023年理工学部第3問〜逆関数とで囲まれる面積

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 実数xに対して関数f(x)をf(x)=$e^{x-2}$で定め、正の実数xに対して関数g(x)をg(x)=$\log x$+2で定める。またy=f(x), y=g(x)のグラフをそれぞれ$C_1$,$C_2$とする。以下の問いに答えよ。
(1)f(x)とg(x)がそれぞれ互いの逆関数であることを示せ。
(2)直線y=xと$C_1$が2点で交わることを示せ。ただし、必要なら2<e<3を証明しないで用いてよい。
(3)直線y=xと$C_1$との2つの交点のx座標を$\alpha$, $\beta$とする。ただし$\alpha$<$\beta$とする。
直線y=xと$C_1$,$C_2$をすべて同じxy平面上に図示せよ。
(4)$C_1$と$C_2$で囲まれる図形の面積を(3)の$\alpha$と$\beta$の多項式で表せ。

2023早稲田大学理工学部過去問
この動画を見る 
PAGE TOP