#36 数検1級1次 過去問 積分 - 質問解決D.B.(データベース)

#36 数検1級1次 過去問 積分

問題文全文(内容文):
$\displaystyle \int_{-1}^{1}\sqrt{ \displaystyle \frac{1+x}{1-x} }\ dx$を計算せよ。
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1}\sqrt{ \displaystyle \frac{1+x}{1-x} }\ dx$を計算せよ。
投稿日:2021.11.16

<関連動画>

大阪大 区分求積法 ヨビノリ病欠 代講ヤス

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=\displaystyle \sum_{k=1}^n \displaystyle \frac{[\sqrt{ 2n^2-k^2 }]}{n^2}$

$\displaystyle \lim_{ n \to \infty } a_n$を求めよ

出典:2000年大阪大学 過去問
この動画を見る 

福田の数学〜立教大学2024年経済学部第1問(6)〜定積分で表された関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$0 \leqq x \leqq1$ の範囲において $f(x) \geqq 0$ である $2$ 次関数 $f(x) = ax^2+b$ は、等式
$\displaystyle f(x)(\int_0^1f(t)dt) = x^2+5$
を満たす。このとき、定数 $a,b$ は $a=\fbox{ケ}, b=\fbox{コ}$ である。
この動画を見る 

【数Ⅱ】【微分法と積分法】定積分と恒等式1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$f(x) = ax^2 + bx + 1$ とする。
任意の1次関数 $g(x)$ に対して、常に
$\int_{0}^{1} f(x) g(x) \,dx = 0$
が成り立つとき、定数 $a, b$ の値を求めよ。
この動画を見る 

大学入試問題#42 慶應義塾大学(2021) 絶対値の定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a:$実数
$f(x)=|x|+a$に対して$\displaystyle \int_{-5}^{5}|f(x)|dx$が最小となる$a$の値を求めよ。

出典:2021年慶應義塾大学 入試問題
この動画を見る 

【数Ⅱ】【微分法と積分法】定積分で表された関数1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数 $f(x) = \int_{-1}^{x} (3t^2 - 4t + 1) \,dt$
が極値をとるときの $x$ の値を求めよ。
この動画を見る 
PAGE TOP