福田の数学〜青山学院大学2021年理工学部第5問〜絶対値の付いた関数と面積の最大最小 - 質問解決D.B.(データベース)

福田の数学〜青山学院大学2021年理工学部第5問〜絶対値の付いた関数と面積の最大最小

問題文全文(内容文):
${\Large\boxed{5}}$tを$0 \leqq t \leqq \frac{\pi}{2}$を満たす定数とする。関数
$f(x)=|\sin x-\sin t|  (0 \leqq x \leqq \pi)$
について、以下の問いに答えよ。
(1)$t=\frac{\pi}{6}$のとき$y=f(x) (0 \leqq x \leqq \pi)$のグラフを描け。

(2)$y=f(x) (0 \leqq x \leqq \pi)$のグラフとx軸、y軸および直線$x=\pi$
で囲まれた図形の面積をSとする。Sをtを用いて表せ。

(3)tが$\leqq t \leqq \frac{\pi}{2}$の範囲を動くときのSの最大値と最小値を求めよ。

2021青山学院大学理工学部過去問
単元: #大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$tを$0 \leqq t \leqq \frac{\pi}{2}$を満たす定数とする。関数
$f(x)=|\sin x-\sin t|  (0 \leqq x \leqq \pi)$
について、以下の問いに答えよ。
(1)$t=\frac{\pi}{6}$のとき$y=f(x) (0 \leqq x \leqq \pi)$のグラフを描け。

(2)$y=f(x) (0 \leqq x \leqq \pi)$のグラフとx軸、y軸および直線$x=\pi$
で囲まれた図形の面積をSとする。Sをtを用いて表せ。

(3)tが$\leqq t \leqq \frac{\pi}{2}$の範囲を動くときのSの最大値と最小値を求めよ。

2021青山学院大学理工学部過去問
投稿日:2021.09.14

<関連動画>

福田の数学〜名古屋大学2023年文系第1問〜3次関数と2次関数のグラフ

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ aを実数とし、2つの関数$f(x)=x^3-(a+2)x^2+2a+1 $と$g(x)$=$-x^2+1$ を考える。
(1)$f(x)$-$g(x)$ を因数分解せよ。
(2)y=$f(x)$とy=$g(x)$のグラフの共有点が2個であるようなaを求めよ。
(3)aは(2)の条件を満たし、さらに$f(x)$の極大値は1よりも大きいとする。
y=$f(x)$とy=$g(x)$のグラフを同じ座標平面に図示せよ。

2023名古屋大学文系過去問
この動画を見る 

数学「大学入試良問集」【18−10 定数分離と微分】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#名城大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)=\displaystyle \frac{e^x}{x-1}$について、次の問いに答えよ。
(1)曲線$y=f(x)$のグラフの概形をかけ。
(2)定数$k$に対して、方程式$e^x=k(x-1)$の異なる実数解の個数を求めよ。
この動画を見る 

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察5(受験編)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#式と証明#式の計算(整式・展開・因数分解)#微分法と積分法#恒等式・等式・不等式の証明#接線と増減表・最大値・最小値#数列#数列とその和(等差・等比・階差・Σ)#数学的帰納法#微分とその応用#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$n$個の正の数$a_1,a_2,\cdots,a_n$に対して

$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n}$$ \geqq \sqrt[n]{a_1a_2\cdots a_n}\\$
この動画を見る 

山形(医他)4次関数と接線 積分 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
'89山形大学過去問題
$f(x)=x^4-6a^2x^2+5a^4$ (a>0)
(a,0)における接線l。
f(x)とlとで囲まれる面積
この動画を見る 

2022藤田医科大の簡単な問題 メインはn個の相加相乗平均の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x\gt 0$において$\dfrac{x}{2}+\dfrac{2}{x^2}$の最小値を求めよ.

2022藤田医科大過去問
この動画を見る 
PAGE TOP