福田の数学〜早稲田大学2021年教育学部第2問〜ベクトルの図形への応用 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2021年教育学部第2問〜ベクトルの図形への応用

問題文全文(内容文):
${\Large\boxed{2}}$
点$\rm O$を中心とする半径$1$の円の周上に相異なる3点$\rm A,B,C$があり、実数$b,c$に対して$\overrightarrow{ \rm OA }+b \overrightarrow{ \rm OB }+c\overrightarrow{ \rm OC }=\overrightarrow{ 0 }$
の関係を満たしている。このとき、次の問いに答えよ。
(1) $\rm \angle BAO=\beta, \angle CAO=\gamma$とするとき、$b$と$c$の値を求めよ。
(2) $\rm \triangle ABC$の垂心を$\rm H$とする。$b=c$のとき、$\rm \overrightarrow{ \rm OH }$を$\overrightarrow{\rm OA }$および$b$を用いて表せ。

2021早稲田大学教育学部過去問
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$
点$\rm O$を中心とする半径$1$の円の周上に相異なる3点$\rm A,B,C$があり、実数$b,c$に対して$\overrightarrow{ \rm OA }+b \overrightarrow{ \rm OB }+c\overrightarrow{ \rm OC }=\overrightarrow{ 0 }$
の関係を満たしている。このとき、次の問いに答えよ。
(1) $\rm \angle BAO=\beta, \angle CAO=\gamma$とするとき、$b$と$c$の値を求めよ。
(2) $\rm \triangle ABC$の垂心を$\rm H$とする。$b=c$のとき、$\rm \overrightarrow{ \rm OH }$を$\overrightarrow{\rm OA }$および$b$を用いて表せ。

2021早稲田大学教育学部過去問
投稿日:2021.06.02

<関連動画>

【わかりやすく解説】位置ベクトル(内分・外分・重心)【数学B/平面ベクトル】

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\triangle ABC$において、辺$BC$を$2:3$に内分する点を$D$, 辺$BC$を$2:1$に外分する点を$E$とし、三角形の重心を$G$とする。
$\overrightarrow{ AB }=\vec{ b },\overrightarrow{ AC }=\vec{ c }$とするとき、次のベクトルを$\vec{ b },\vec{ c }$を用いて表せ。

(1)$\overrightarrow{ AD }$
(2)$\overrightarrow{ AE }$
(3)$\overrightarrow{ AG }$
(4)$\overrightarrow{ GD }$
(5)$\overrightarrow{ DE }$
この動画を見る 

【数B】ベクトル:ベクトルの基本⑯点の存在範囲を考える

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
点の存在範囲を考える問題に関して解説していきます.
この動画を見る 

【数B】ベクトル:ベクトルの基本⑧大きさを求めたいときの絶対値の2乗

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルの絶対値を求めるために2乗の計算をしてみた.
この動画を見る 

【高校数学】数Ⅲ-45 極座標と極方程式②

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の極座標の点$A,B$の直交座標を求めよ。

①$A\left(3,\dfrac{\pi}{6}\right)$

②$B\left(2,-\dfrac{5}{6}\pi\right)$

次の直交座標の点$C,D$の極座標$(r,\theta)$を求めよ。
ただし、$0\leqq \theta \leqq 2\pi$とする。

③$C(0,-2)$

④$D(\sqrt3,-3)$
この動画を見る 

大学入試問題#899「初めてのベクトルやってみた」 #北海道大学(2024)

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: ますただ
問題文全文(内容文):
三角形$OAB$が
$|\overrightarrow{ OA }|=3,$ $|\overrightarrow{ AB }|=5,$ $\overrightarrow{ OA }.\overrightarrow{ AB }=10$
を満たしているとする。
三角形$OAB$の内接円の中心を$I$とし、この内接円と辺$OA$の接点を$H$とする。

1.辺$OB$の長さを求めよ。
2.$\overrightarrow{ OI }$を$\overrightarrow{ OA }$と$\overrightarrow{ OB }$を用いて表せ。
3.$\overrightarrow{ HI }$を$\overrightarrow{ OA }$と$\overrightarrow{ OB }$を用いて表せ。

出典:2024年北海道大学
この動画を見る 
PAGE TOP