福田の数学〜早稲田大学2021年教育学部第2問〜ベクトルの図形への応用 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2021年教育学部第2問〜ベクトルの図形への応用

問題文全文(内容文):
${\Large\boxed{2}}$
点$\rm O$を中心とする半径$1$の円の周上に相異なる3点$\rm A,B,C$があり、実数$b,c$に対して$\overrightarrow{ \rm OA }+b \overrightarrow{ \rm OB }+c\overrightarrow{ \rm OC }=\overrightarrow{ 0 }$
の関係を満たしている。このとき、次の問いに答えよ。
(1) $\rm \angle BAO=\beta, \angle CAO=\gamma$とするとき、$b$と$c$の値を求めよ。
(2) $\rm \triangle ABC$の垂心を$\rm H$とする。$b=c$のとき、$\rm \overrightarrow{ \rm OH }$を$\overrightarrow{\rm OA }$および$b$を用いて表せ。

2021早稲田大学教育学部過去問
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$
点$\rm O$を中心とする半径$1$の円の周上に相異なる3点$\rm A,B,C$があり、実数$b,c$に対して$\overrightarrow{ \rm OA }+b \overrightarrow{ \rm OB }+c\overrightarrow{ \rm OC }=\overrightarrow{ 0 }$
の関係を満たしている。このとき、次の問いに答えよ。
(1) $\rm \angle BAO=\beta, \angle CAO=\gamma$とするとき、$b$と$c$の値を求めよ。
(2) $\rm \triangle ABC$の垂心を$\rm H$とする。$b=c$のとき、$\rm \overrightarrow{ \rm OH }$を$\overrightarrow{\rm OA }$および$b$を用いて表せ。

2021早稲田大学教育学部過去問
投稿日:2021.06.02

<関連動画>

【数C】中高一貫校問題集4 464:平面上のベクトル:ベクトル方程式:ベクトル方程式の復習②

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #TK数学#TK数学問題集4#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
△ABC(それぞれの位置ベクトルをa、b、cとする)について、以下の問いに答えよ。
(2)頂点Aと辺BCの中点を通る直線のベクトル方程式を求めよ
この動画を見る 

【数C】平面ベクトル:A(4,3) B(8,5) C(5,8)のとき△ABCの面積Sを求めよう。

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
A(4,3) B(8,5) C(5,8)のとき△ABCの面積Sを求めよう。
この動画を見る 

【数C】【平面上のベクトル】ベクトルの基本計算2 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)$\overrightarrow{ OA }=2\vec{ a }$ ,$\overrightarrow{ OA }=3\vec{ b } $ ,$\overrightarrow{ OP }=6\vec{ b }-4\vec{ a }$ であるとき、
 $\overrightarrow{ OP }//\overrightarrow{ AB }$ であることを示せ。ただし、$\vec{ a }≠0$ ,$\vec{ b }≠0$ で、$\vec{ a }$ と $\vec{ b }$ は平行でないとする。
(2)$\overrightarrow{ OA }=\vec{ a }$ ,$\overrightarrow{ OB }=\vec{ b }$ ,$\overrightarrow{ OP }=3\vec{ a }-2\vec{ b }$ ,$\overrightarrow{ OQ }=3\vec{ a }$である
とき、$\overrightarrow{ PQ }//\overrightarrow{ OB }$ であることを示せ。ただし、$\vec{ a }≠0$ , $\vec{ b }≠0$ で、$\vec{ a }$ と $\vec{ b }$ は平行でないとする。
この動画を見る 

【数学】ベクトルの面積公式の語呂合わせ・証明を10分でまとめてみた 

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学】ベクトルの面積公式の語呂合わせ・証明のまとめ動画です
この動画を見る 

もっちゃんと数学 内積

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
内積に関して解説していきます.
この動画を見る 
PAGE TOP