福田の数学〜早稲田大学2021年教育学部第2問〜ベクトルの図形への応用 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2021年教育学部第2問〜ベクトルの図形への応用

問題文全文(内容文):
${\Large\boxed{2}}$
点$\rm O$を中心とする半径$1$の円の周上に相異なる3点$\rm A,B,C$があり、実数$b,c$に対して$\overrightarrow{ \rm OA }+b \overrightarrow{ \rm OB }+c\overrightarrow{ \rm OC }=\overrightarrow{ 0 }$
の関係を満たしている。このとき、次の問いに答えよ。
(1) $\rm \angle BAO=\beta, \angle CAO=\gamma$とするとき、$b$と$c$の値を求めよ。
(2) $\rm \triangle ABC$の垂心を$\rm H$とする。$b=c$のとき、$\rm \overrightarrow{ \rm OH }$を$\overrightarrow{\rm OA }$および$b$を用いて表せ。

2021早稲田大学教育学部過去問
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$
点$\rm O$を中心とする半径$1$の円の周上に相異なる3点$\rm A,B,C$があり、実数$b,c$に対して$\overrightarrow{ \rm OA }+b \overrightarrow{ \rm OB }+c\overrightarrow{ \rm OC }=\overrightarrow{ 0 }$
の関係を満たしている。このとき、次の問いに答えよ。
(1) $\rm \angle BAO=\beta, \angle CAO=\gamma$とするとき、$b$と$c$の値を求めよ。
(2) $\rm \triangle ABC$の垂心を$\rm H$とする。$b=c$のとき、$\rm \overrightarrow{ \rm OH }$を$\overrightarrow{\rm OA }$および$b$を用いて表せ。

2021早稲田大学教育学部過去問
投稿日:2021.06.02

<関連動画>

福田の一夜漬け数学〜平面ベクトル(3)〜受験編・文理共通

アイキャッチ画像
単元: #数Ⅱ#平面上のベクトル#図形と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
点$O$を原点、$A(1,1),B(1,-1)$とする。
(1) $\overrightarrow{ OP }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$で定められる点Pを考える。$s,t$が $2s+t \leqq 2,$
$s \geqq 0,t \geqq 0$を満たすながら動くとき、点$P$の存在する範囲を図示せよ。

(2) $\overrightarrow{ OQ }=(1-u)\overrightarrow{ QA }+2u\overrightarrow{ QB }$で定められる点$Q$を考える。$u$が$0 \leqq u \leqq 1$を
満たしながら動くとき、点$P$の存在する範囲を図示せよ。
この動画を見る 

【数学B/平面ベクトル】ベクトルの内積(公式と使い方)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
2つのベクトル$\vec{ a },\vec{ b }$について、$\vec{ a }$と$\vec{ b }$の内積を求めよ。
(1)$|\vec{ a }|=2,|\vec{ b }|=3,\theta=45^{ \circ }$
(2)$|\vec{ a }|=1,|\vec{ b }|=4,\theta=150^{ \circ }$
この動画を見る 

【高校数学】 数B-20 位置ベクトル①

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
2点$A(\vec{ a })$、$B(\vec{ a })$を結ぶ線分ABを
m:nに内分する点$P(\vec{ p })$と、m:nに外分する点$Q(\vec{ q })$は

$\overrightarrow{ p }=$①____________

$\overrightarrow{ q }=$②____________

2点A、Bを結ぶ線分ABについて、次の点の位置ベクトルを$\vec{ a }$、$\vec{ b }$で表そう。

③2:3に内分する点

⑤3:4に外分する点

④4:1に外分する点

⑥中点
この動画を見る 

【数C】平面ベクトル:平面ベクトル存在範囲 △OABに対し,OP=sOA+tOBとする。 点Pが次の条件を満たしながら動くとき、点Pの存在範囲を求めよ。(1)s+t=4,s≧0,t≧0

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
平面ベクトル存在範囲 △OABに対し,OP=sOA+tOBとする。 点Pが次の条件を満たしながら動くとき、点Pの存在範囲を求めよ。(1)s+t=4,s≧0,t≧0
この動画を見る 

【数C】【平面上のベクトル】ベクトルの成分4 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\vec{ a }=(2 ,2)$ ,$\vec{ b }=(3 ,1)$ のとき、$\vec{ x }-\vec{ b }$ が $\vec{ a }$に平行で、
かつ $| \vec{ x }+\vec{ b } |=4$ となるような$\vec{ x }$ を成分表示せよ。
この動画を見る 
PAGE TOP