福田の数学〜明治大学2021年全学部統一入試IⅡAB第3問〜平面幾何とベクトル - 質問解決D.B.(データベース)

福田の数学〜明治大学2021年全学部統一入試IⅡAB第3問〜平面幾何とベクトル

問題文全文(内容文):
${\Large\boxed{3}}$辺の長さが2である正六角形ABCDEFがあり、点O,P,Qは次の条件を満たす。
・点Oは辺AB上にある。
・点Pは正六角形ABCDFの内部にある。
・点Qは線分CP上にある。
・三角形OCPと三角形OQFは共に正三角形である。

(1)四角形OQPFに着目すると、$\angle OFQ=\angle OPQ$より、
OQPFは円に内接する四角形なので、$\angle OPF=\boxed{\ \ アイ\ \ }°$とわかる。

(2)$AB //FC$に着目すると、$\triangle OCF=\boxed{\ \ ウ\ \ }\sqrt{\boxed{\ \ エ\ \ }}$である。$OC//FP$
であることに着目すると、$\triangle OCP=\triangle OCF$なので、$OC^2=\boxed{\ \ オ\ \ }$とわかる。
また、$OB=\sqrt{\boxed{\ \ カ\ \ }}-\boxed{\ \ キ\ \ }$である。

(3)$OQ^2=OF^2=\boxed{\ \ クケ\ \ }-\boxed{\ \ コ\ \ }\sqrt{\boxed{\ \ サ\ \ }}$であり、
$\overrightarrow{ OQ }=t\ \overrightarrow{ OP }+(1-t)\ \overrightarrow{ OC }$
とおくと、$t$は$t^2-t+\sqrt{\boxed{\ \ シ\ \ }}-\boxed{\ \ ス\ \ }=0$を満たす。

2021明治大学全統過去問
単元: #数A#図形の性質#平面上のベクトル#周角と円に内接する四角形・円と接線・接弦定理#平面上のベクトルと内積#数学(高校生)#大学入試解答速報#数学#明治大学#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$辺の長さが2である正六角形ABCDEFがあり、点O,P,Qは次の条件を満たす。
・点Oは辺AB上にある。
・点Pは正六角形ABCDFの内部にある。
・点Qは線分CP上にある。
・三角形OCPと三角形OQFは共に正三角形である。

(1)四角形OQPFに着目すると、$\angle OFQ=\angle OPQ$より、
OQPFは円に内接する四角形なので、$\angle OPF=\boxed{\ \ アイ\ \ }°$とわかる。

(2)$AB //FC$に着目すると、$\triangle OCF=\boxed{\ \ ウ\ \ }\sqrt{\boxed{\ \ エ\ \ }}$である。$OC//FP$
であることに着目すると、$\triangle OCP=\triangle OCF$なので、$OC^2=\boxed{\ \ オ\ \ }$とわかる。
また、$OB=\sqrt{\boxed{\ \ カ\ \ }}-\boxed{\ \ キ\ \ }$である。

(3)$OQ^2=OF^2=\boxed{\ \ クケ\ \ }-\boxed{\ \ コ\ \ }\sqrt{\boxed{\ \ サ\ \ }}$であり、
$\overrightarrow{ OQ }=t\ \overrightarrow{ OP }+(1-t)\ \overrightarrow{ OC }$
とおくと、$t$は$t^2-t+\sqrt{\boxed{\ \ シ\ \ }}-\boxed{\ \ ス\ \ }=0$を満たす。

2021明治大学全統過去問
投稿日:2021.09.19

<関連動画>

【数B】ベクトル:ベクトルが「等しい」とは??

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\overrightarrow{a}=(4,1-5),\overrightarrow{b}=(2m,1)$が等しいとき,$l,m$の値を求めよ.
この動画を見る 

数学「大学入試良問集」【14−8ベクトルと軌跡と等式・不等式】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
平面上において同一直線上にない3点$A,B,C$があるとき、次の各問いに対して、それぞれの式をみたす点$P$の集合を求めよ。
(1)$\overrightarrow{ AP }+\overrightarrow{ BP }+\overrightarrow{ CP }=\overrightarrow{ AC }$
(2)$\overrightarrow{ AB }・\overrightarrow{ AP }=\overrightarrow{ AB }・\overrightarrow{ AB }$
(3)$\overrightarrow{ AB }・\overrightarrow{ AC }+\overrightarrow{ AP }・\overrightarrow{ AP } \leqq \overrightarrow{ AB }・\overrightarrow{ AP }+\overrightarrow{ AC }・\overrightarrow{ AP }$
この動画を見る 

【数C】ベクトルが「等しい」とは??

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #アドバンスプラス#アドバンスプラス数Ⅱ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
|vec(a)|=5であるvec(a)がある。
(1) vec(a)と同じ向きの単位ベクトルを、vec(a)を用いて表せ。
(2) vec(a)と平行で、大きさが3のベクトルを、vec(a)を用いて表せ。
この動画を見る 

福田の一夜漬け数学〜平面ベクトル(3)〜受験編・文理共通

アイキャッチ画像
単元: #数Ⅱ#平面上のベクトル#図形と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
点$O$を原点、$A(1,1),B(1,-1)$とする。
(1) $\overrightarrow{ OP }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$で定められる点Pを考える。$s,t$が $2s+t \leqq 2,$
$s \geqq 0,t \geqq 0$を満たすながら動くとき、点$P$の存在する範囲を図示せよ。

(2) $\overrightarrow{ OQ }=(1-u)\overrightarrow{ QA }+2u\overrightarrow{ QB }$で定められる点$Q$を考える。$u$が$0 \leqq u \leqq 1$を
満たしながら動くとき、点$P$の存在する範囲を図示せよ。
この動画を見る 

数学どうにかしたい人へ

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る 
PAGE TOP