大学入試問題#707「たぶん良問だと思う」 佐賀大学(2013) 方程式 - 質問解決D.B.(データベース)

大学入試問題#707「たぶん良問だと思う」 佐賀大学(2013) 方程式

問題文全文(内容文):
$x+\displaystyle \frac{1}{x}=\displaystyle \frac{y}{8}+\displaystyle \frac{8}{y}=\displaystyle \frac{x}{y}+\displaystyle \frac{y}{x}$をみたす実数$x,y$の組をすべて求めよ

出典:2013年佐賀大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学
指導講師: ますただ
問題文全文(内容文):
$x+\displaystyle \frac{1}{x}=\displaystyle \frac{y}{8}+\displaystyle \frac{8}{y}=\displaystyle \frac{x}{y}+\displaystyle \frac{y}{x}$をみたす実数$x,y$の組をすべて求めよ

出典:2013年佐賀大学 入試問題
投稿日:2024.01.17

<関連動画>

茨城大 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
茨城大学過去問題
$n \geqq 2$  整数
(x+1)(x+2)(x+3)・・・(x+n)
(1)$x^{n-1}$の係数
(2)$x^{n-2}$の係数
この動画を見る 

大学入試問題#90 京都大学(2001) 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x,y,z$:正の整数
$x^2+2y^2+2z^2-2xy-2xz+2yz-5=0$をみたす組($x,y,z$)をすべて求めよ。

出典:2001年京都大学 入試問題
この動画を見る 

久留米大(医)4次方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#久留米大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x=1+\sqrt{3}c$が解である$x^4+ax^3+ax^2+(6-a)x+b=0$の
実数$a,b$を求めよ.

久留米大(医)過去問
この動画を見る 

慶應(総合政策)絶対値のついた三次関数の最大最小

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+3x^2-2$
$|f(-x+2)|$の区間$1 \leqq x \leqq 5$における最大値、最小値を求めよ

出典:2003年慶應義塾大学 過去問
この動画を見る 

数学「大学入試良問集」【14−15 折れ線の最小値と空間ベクトル】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
点$A(1,2,4)$を通り、ベクトル$\vec{ n }=(-3,1,2)$に垂直な平面を$\alpha$とする。
平面$\alpha$に関して同じ側に2点$P(-2,1,7),Q(1,3,7)$がある。
次の問いに答えよ。
(1)
平面$\alpha$に関して点$P$と対称な点$R$の座標を求めよ。

(2)
平面$\alpha$上の点で、$PS+QS$を最小にする点$S$の座標とそのときの最小値を求めよ。
この動画を見る 
PAGE TOP