2024年問題 近畿大 - 質問解決D.B.(データベース)

2024年問題 近畿大

問題文全文(内容文):
$\sqrt{n^2+2024}$が自然数となる自然数nは全部で何コか?

近畿大学
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{n^2+2024}$が自然数となる自然数nは全部で何コか?

近畿大学
投稿日:2023.12.13

<関連動画>

【因数分解】あるあるの難問!パターンを抑えたい数学の問題 #Shorts

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
因数分解せよ。

$x^4-16x^2+100$
この動画を見る 

ナイスな整数問題

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a^2+b^2-a^2b^2+10ab-16$が素数となるような整数(a.b)をすべて求めよ.
この動画を見る 

「二次関数の最大最小 場合分け②】【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a \gt b0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq a)$について
(1)$f(x)$の最小値$m(a)$を求めよ。

$a \gt 0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq a)$について
(3)$k=m(a)$のグラフをかけ。

$a \gt 0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq a)$について
(4)$K=M(a)$のグラフをかけ。
この動画を見る 

【数Ⅰ】【集合と論証】真偽の調べ方 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#集合と命題#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a,b$は実数とする。次の命題の真偽を求めよ。
(1)$ab=0$ならば$a^2+b^2=0$である。
(2)$a^2=4$ならば$|a+1|≧1$である。
(3)$ab$が有理数であるならば、$a,b$はともに有理数である。
(4)$a+b, ab$がともに有理数ならば、$a,b$はともに有理数である。

全体集合を$U$とし、条件$p,q$を満たす全体の集合を、それぞれ$P,Q$とする。
命題$\overline{p}⇒q$が真であるとき、$P,Q$について常に成り立つ事をすべて選べ。

①$P=Q$
②$Q⊂P$
③$\overline{Q}⊂P$
④$P⊂\overline{Q}$
⑤$P∪\overline{Q}=P$
⑥$P∪\overline{Q}=\overline{Q}$
⑦$P∩Q=\varnothing$
⑧$P∪Q=U$
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第1問(1)〜命題の真偽とカードの裏表

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(1)表面にアルファベットが、裏面には自然数が書かれている5枚のカードが、
次のように置かれている。

${\large\boxed{P}}\hspace{45pt}{\large\boxed{Q}}\hspace{45pt}{\large\boxed{1}}\hspace{45pt}{\large\boxed{3}}\hspace{45pt}{\large\boxed{6}}$

これら5枚のカードに対する命題「表面がアルファベットPならば、裏面は
素数である」の審議を調べるために、できるだけ少ない枚数のカードを裏返
して確認したい。左からn番目の位置にあるカードを裏返す必要があるとき
には$a_n=1$、必要のないときには$a_n=0$とするとき
$\sum_{k=1}^5 a_k2^{k-1}=\boxed{\ \ ア\ \ }$
である。

2022早稲田大学人間科学部過去問
この動画を見る 
PAGE TOP