福田のわかった数学〜高校3年生理系003〜極限(3) - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系003〜極限(3)

問題文全文(内容文):
数学$\textrm{III}$ 極限(3)
$\lim_{n \to \infty}(2^n+3^n)^{\frac{1}{n}}$ を求めよ。
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(3)
$\lim_{n \to \infty}(2^n+3^n)^{\frac{1}{n}}$ を求めよ。
投稿日:2021.04.24

<関連動画>

【数Ⅲ】 極限:r^nの極限を含むグラフの概形

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数の極限:$r^n$の極限:次の関数のグラフの概形をかき、関数の連続性を調べよう
$f(x)=\displaystyle \lim_{x\to\infty}\dfrac{x^{2n-1}+x+2}{x^{2n}+1}$
この動画を見る 

福田の1.5倍速演習〜合格する重要問題013〜京都大学2015年度理系数学第3問〜極限と追い出しの原理

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#数列の極限#微分法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
aを実数とするとき、(a,0)を通り、$y=e^x+1$に接する直線がただ
一つ存在することを示せ。

(2)$a_1=1$として、$n=1,2,\cdots$について、$(a_n, 0)$を通り、$y=e^x+1$に接する
直線の接点のx座標を$a_{n+1}$とする。このとき、$\lim_{n \to \infty}(a_{n+1}-a_n)$を求めよ。

2015京都大学理系過去問
この動画を見る 

【高校数学】数Ⅲ-66 数列の極限②

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の極限を求めよ。

①$\displaystyle \lim_{n\to\infty}(-3n+8)$

②$\displaystyle \lim_{n\to\infty}(n-1)$

③$\displaystyle \lim_{n\to\infty}\left(5+\dfrac{2}{n}\right)$

④$\displaystyle \lim_{n\to\infty}(-3)^n$

⑤$\displaystyle \lim_{n\to\infty}\dfrac{n-3}{2n+1}$

⑥$\displaystyle \lim_{n\to\infty}(4n-3n^2)$
この動画を見る 

福田の数学〜千葉大学2024年理系第5問〜確率と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$n$ を $3$ 以上の整数とする。座標平面上の $2n$ 個の点からなる集合
$\{ (x,y) | x=1,2,3, \cdots , n , y=1,2 \}$
を考える。この集合から異なる $3$ 点を無作為に選び、その $3$ 点を線分で結んで得られる図形の面積を $X$ とする。ただし、 $3$ 点が同一直線上にあるときは $X=0$ とする。
$(1)$ $k$ が $0$ 以上の整数のとき、 $X$ が $\displaystyle \frac{k}{2}$ となる確率 $p_k$ を $n$ と $k$ の式で表せ。
$(2)$ $X$ が $\displaystyle \frac{n}{4}$ 以下となる確率を $q_n$ とおく。 $\displaystyle \lim_{n \to \infty} q_n$ を求めよ。
この動画を見る 

大学入試問題#407「定石通り」 産業医科大学(2018) #極限

アイキャッチ画像
単元: #関数と極限#関数の極限#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{x^2}{(3^x-1)\sin\ x}$

出典:2018年産業医科大学 入試問題
この動画を見る 
PAGE TOP