【高校数学】 数B-35 空間の点の座標 - 質問解決D.B.(データベース)

【高校数学】 数B-35 空間の点の座標

問題文全文(内容文):
◎点P(3.5.4)である右の図のような 直方体OABC-RSPQについて求めよう。

①頂点Bの座標

②頂点、Aの座標

③頂点Rの座標

④頂点Qの座標

⑤SRとPBのなす角

◎点(2.1.3)について、それぞれに関して対称な点の座標を求めよう。

⑥ zx平面

⑦Z軸

⑧原点

※図は動画内参照
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎点P(3.5.4)である右の図のような 直方体OABC-RSPQについて求めよう。

①頂点Bの座標

②頂点、Aの座標

③頂点Rの座標

④頂点Qの座標

⑤SRとPBのなす角

◎点(2.1.3)について、それぞれに関して対称な点の座標を求めよう。

⑥ zx平面

⑦Z軸

⑧原点

※図は動画内参照
投稿日:2015.12.28

<関連動画>

【数B】空間ベクトル:~正射影ベクトルとそれを使った演習~ A(2,0,1)を通り方向ベクトル(1,2,2)である直線l、B(3,-1,2)を通り方向ベクトル(2,-1,2)である直線mの距離を求めよ

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
A(2,0,1)を通り方向ベクトル(1,2,2)である直線l、B(3,-1,2)を通り方向ベクトル(2,-1,2)である直線mの距離を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題071〜東京医科歯科大学2017年度医学部第2問〜空間における球面と軌跡の問題

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と方程式#円と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ xyz空間において、点O(0, 0, 0)と点A(0, 0, 1)を結ぶ線分OAを直径にもつ球面を$\sigma$とする。このとき以下の各問に答えよ。
(1) 球面$\sigma$の方程式を求めよ。
(2) xy平面上にあってOと異なる点Pに対して、線分APと球面$\sigma$との交点をQとするとき、$\overrightarrow{ OQ } \bot \overrightarrow{ AP }$を示せ。
(3) 点S(p, q, r)を$\overrightarrow{OS}・\overrightarrow{ AS }=-|\overrightarrow{ OS }|^2$を満たす、xy平面上にない定点とする。$\sigma$上の点Qが$\overrightarrow{ OS } \bot \overrightarrow{ SQ }$を満たしながら動くとき、直線AQとxy平面上の交点Pはどのような図形を描くか。p, q, rを用いて答えよ。

2017東京医科歯科大学医学部過去問
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試12AB第1問(1)〜空間図形の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)右図(※動画参照)のような正六面体$ABCD-EFGH$において、辺$FG$の中点を$M$とする。
このとき、三角形$CHM$の重心を$X$とすると、

$\overrightarrow{ AX }=\boxed{\ \ ア\ \ }\ \overrightarrow{ AB }+\boxed{\ \ イ\ \ }\ \overrightarrow{ AD }+\boxed{\ \ ウ\ \ }\ \overrightarrow{ AE }$
と表せ、直線$AG$と三角形$CHM$の交点を$Y$とすると

$\overrightarrow{ AY }=\boxed{\ \ エ\ \ }\ \overrightarrow{ AB }+\boxed{\ \ オ\ \ }\ \overrightarrow{ AD }+\boxed{\ \ カ\ \ }\ \overrightarrow{ AE }$
と表せる。

解答群:$⓪\ 1 \ \ \ \ ①\ \frac{1}{2} \ \ \ \ ②\ \frac{1}{3} \ \ \ \ ③\ \frac{2}{3} \ \ \ \ ④\ \frac{1}{4} $
$⑤\ \frac{3}{4} \ \ \ \ ⑥\ \frac{1}{5} \ \ \ \ ⑦\ \frac{4}{5} \ \ \ \ ⑧\ \frac{1}{6} \ \ \ \ ⑨\ \frac{5}{6}$

2022明治大学全統過去問
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第1問(1)〜空間ベクトルと球面の方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#円と方程式#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(1)座標空間内に3点A$(2,0,0),\ B(0,4,0),\ C(0,0,8)$をとる。
2つのベクトル$\overrightarrow{ AP }$と$\overrightarrow{ BP }+\overrightarrow{ CP }$の内積が0となるような点$P(x,y,z)$
のうち、$|\overrightarrow{ AP }$|が最大となる点Pの座標を求めよ。

2022早稲田大学教育学部過去問
この動画を見る 

【数B】ベクトル:ベクトルの基本㉑空間における平面上の点を平面の方程式から求める

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点A(2,0,0),B(0,1,0),C(0,0,-2)が与えられたとき、原点Oから平面ABCに下ろした垂線の足を点Hとする。このとき、点Hの座標と線分OHの長さを求めよ
この動画を見る 
PAGE TOP