【数B】数列:特性方程式はなぜ解けるのか - 質問解決D.B.(データベース)

【数B】数列:特性方程式はなぜ解けるのか

問題文全文(内容文):
$a_1=4,a_{n+1}=2a_n-1$のとき、一般項$a_n$を求めよ
チャプター:

0:00 オープニング
0:24 問題文
0:39 隣接2項間の変形
2:04 特性方程式の解ける仕組み
4:28 特性方程式を使うときの書き方の注意点
6:21 問題の解答

単元: #数列#漸化式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a_1=4,a_{n+1}=2a_n-1$のとき、一般項$a_n$を求めよ
投稿日:2021.03.15

<関連動画>

福田の1.5倍速演習〜合格する重要問題043〜北海道大学2017年度文系第3問〜確率漸化式の定番問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B
指導講師: 福田次郎
問題文全文(内容文):
正四面体ABCDの頂点を移動する点Pがある。点Pは、1秒ごとに、
隣の3頂点のいずれかに等しい確率$\frac{a}{3}$で移るか、もとの頂点に確率1-aで
留まる。初め頂点Aにいた点Pが、n秒後に頂点Aにいる確率を$p_n$とする。
ただし、$0 \lt a \lt 1$とし、nは自然数とする。

(1)数列$\left\{p_n\right\}$の漸化式を求めよ。
(2)確率$p_n$を求めよ。

2017北海道大学文系過去問
この動画を見る 

【数B】【数列】1から8までの数字のさいころを繰り返し投げ、n回目までに出た数字の合計をX (n) とする。X (n) を3で割ったあまりが0,1,2をそれぞれ数列で置くとき、それぞれの一般項を求めよ

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
各面に1から8までの数字が1つずつ書かれた正八面体のさいころを繰り返し投げ、
n回目までに出た数字の合計をX (n) とする。
X (n) を3で割り切れる確率を $a_n$、X (n) を3で割った時1余る確率を$b_n$、
X(n)を3で割った時2余る確率を$c_n$とする。
ただし1から8までの数字の出る確率はどれも同じとする。
1) $a_1$,$b_1$, $c_1$を求めよ。
2)$a_{n+1}$、$b_{n+1}$、$c_{n+1}$を$a_n$、$b_n$、$c_n$を用いて表せ。
3)$a_{n+1}$を$a_n$を用いて表せ。
4) $a_n$、$b_n$、$c_n$を求めよ。
この動画を見る 

例のアレ

アイキャッチ画像
単元: #数列とその和(等差・等比・階差・Σ)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{1}{1×2×3×4}+\displaystyle \frac{1}{2×3×4×5}+\displaystyle \frac{1}{3×4×5×6}$$+…+\displaystyle \frac{1}{6×7×8×9}+\displaystyle \frac{1}{7×8×9×10}$
この動画を見る 

大阪市立大 漸化式 Japanese university entrance exam questions

アイキャッチ画像
単元: #数列#漸化式#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
大阪市立大学過去問題
n自然数
$a_1 = 1 \quad a_{n+1}>a_n$
$(a_{n+1}-a_n)^2= a_{n+1}+a_n$
この動画を見る 

【高校数学】 数B-68 等比数列とその和④

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
初項$a$,公比$r$,項数$n$の等比数列の和を$S_n$とすると
$r \neq 1$のとき,$S_n=①=②$
$r=1$のとき,$S_n=③$

次の等比数列の初項から第$n$項までの和と第5項までの和を求めよう.

④$1,3,9,・・・$

⑤$-2,-2,-2,・・・$

⑥$-1,2,-4,・・・$
この動画を見る 
PAGE TOP