福田の一夜漬け数学〜積分・面積と体積〜切ってから回転その3(受験編) - 質問解決D.B.(データベース)

福田の一夜漬け数学〜積分・面積と体積〜切ってから回転その3(受験編)

問題文全文(内容文):
${\Large\boxed{1}}$ $xyz$空間内の平面$z=0$上に正方形$\ R=\left\{(x,y,z)|1 \leqq x \leqq 2,\ 1 \leqq y \leqq 2 \right\}$
がある。この正方形を$x$軸のまわりに回転してできる立体を$K$とする。
この立体$K$を$y$軸のまわりに1回転してできる立体$L$の体積を求めよ。
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $xyz$空間内の平面$z=0$上に正方形$\ R=\left\{(x,y,z)|1 \leqq x \leqq 2,\ 1 \leqq y \leqq 2 \right\}$
がある。この正方形を$x$軸のまわりに回転してできる立体を$K$とする。
この立体$K$を$y$軸のまわりに1回転してできる立体$L$の体積を求めよ。
投稿日:2018.07.05

<関連動画>

大学入試問題#315 富山県立大学(2010) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#富山県立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}}\tan^3x\ dx$

出典:2010年富山県立大学 入試問題
この動画を見る 

大学入試問題#528「正面突破はしたくない」 福島県立医科大学② 改 (2021) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#福島県立医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} \sin^4x\ \cos^22x\ dx$

出典:2021年福島県立医科大学 入試問題
この動画を見る 

福田の数学〜青山学院大学2022年理工学部第5問〜切り取られる弦の中点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
xy平面上に、円$C:(x-5)^2+y^2=5$と直線$l:y=mx$がある。
(1)Cとlが共有点を持つようなmの値の範囲を求めよ。
mの値が(1)で求めた範囲にあるとき、Cとlの2つの共有点をP,Qとし、
線分PQの中点をMとする。ただし、lがCに接するときはP=Q=Mとする。
(2)点Mの座標をmを用いて表せ。
(3)mが(1)で求めた範囲を動くときの点Mの軌跡を求め、図示せよ。
(4)原点からCに引いた2本の接線と(3)で求めた点Mの軌跡で囲まれた図形を
Dとする。図形Dをx軸の周りに1回転してできる回転体の体積Vを求めよ。

2022青山学院大学理工学部過去問
この動画を見る 

#数検準1級1次_4#不定積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{1}{x(x^2+1)} dx$

出典:数検準1級1次
この動画を見る 

大学入試問題#562「証明問題じゃなきゃ解けるのか?」 東京帝国大学1937 #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#数列#数学的帰納法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$n$:正の整数

$\displaystyle \int_{0}^{\pi} \displaystyle \frac{\sin(2n-1)x}{\sin\ x}\ dx=\pi$を示せ

出典:1937年東京帝国大学 入試問題
この動画を見る 
PAGE TOP