【概要欄に誘導あり】大学入試問題#115 京都大学(2002) 曲線の長さ(極方程式) - 質問解決D.B.(データベース)

【概要欄に誘導あり】大学入試問題#115 京都大学(2002) 曲線の長さ(極方程式)

問題文全文(内容文):
(1)
$x \geqq 0$
$f(x)=log(x+\sqrt{ 1+x^2 })$を微分せよ。

(2)
極方程式
$r=\theta(0 \leqq \theta \leqq \pi)$で定まる曲線の長さ$L$を求めよ。

出典:2002年京都大学 入試問題
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
(1)
$x \geqq 0$
$f(x)=log(x+\sqrt{ 1+x^2 })$を微分せよ。

(2)
極方程式
$r=\theta(0 \leqq \theta \leqq \pi)$で定まる曲線の長さ$L$を求めよ。

出典:2002年京都大学 入試問題
投稿日:2022.02.13

<関連動画>

福田の数学〜東京慈恵会医科大学2022年医学部第4問〜複素数平面と図形

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#平面上の曲線#複素数平面#方べきの定理と2つの円の関係#図形と方程式#点と直線#2次曲線#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
複素数平面上の点zが原点を中心とする半径1の円周上を動くとき、$w=z+\frac{2}{z}$
で表される点wの描く図形をCとする。Cで囲まれた部分の内部(ただし、
境界線は含まない)に定点$\alpha$をとり、$\alpha$を通る直線lがCと交わる2点を$\beta_1,\beta_2$とする。
(1)$w=u+vi$(u,vは実数)とするとき、uとvの間に成り立つ関係式を求めよ。
(2)点$\alpha$を固定したままlを動かすとき、積$|\beta_1-\alpha|・|\beta_2-\alpha|$が最大となる
ようなlはどのような直線のときか調べよ。

2022東京慈恵会医科大学医学部過去問
この動画を見る 

福田の一夜漬け数学〜積分・面積と体積、媒介変数表示(1)〜受験編

アイキャッチ画像
単元: #平面上の曲線#積分とその応用#定積分#面積・体積・長さ・速度#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\theta-\sin\theta \\
y=1-\cos\theta
\end{array}
\right.
\end{eqnarray}(0 \leqq \theta \leqq 2\pi)$で表される曲線をCとする。

(1)Cとx軸で囲まれる部分の領域をDとする。Dの面積Sを求めよ。
(2)Dをx軸の周りに1回転してできる立体の体積Vを求めよ。

$\begin{eqnarray}
\left\{
\begin{array}{l}
x=t^2+1 \\
y=2-t-t^2
\end{array}
\right.
\end{eqnarray}(-2 \leqq t \leqq 1)$で表される曲線とx軸で囲まれた面積を求めよ。
この動画を見る 

福田の数学〜北海道大学2024年理系第1問〜点の一致条件と軌跡

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ $t$を実数とし、$xy$平面上の点P($\cos 2t$, $\cos t$)および点Q($\sin t$, $\sin 2t$)を考える。
(1)点Pと点Qが一致するような$t$の値をすべて求めよ。
(2)$t$が0<$t$<$2\pi$ の範囲で変化するとき、点Pの軌跡を$xy$平面上に図示せよ。
ただし、$x$軸、$y$軸との共有点がある場合は、それらの座標を求め、図中に記せ。
この動画を見る 

福田の数学〜慶應義塾大学2021年医学部第3問〜見上げる角が等しい点の軌跡と2次曲線

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#軌跡と領域#2次曲線#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 水平な平面上の異なる2点A(0,1),Q(x,y)にそれぞれ高さh \gt 0,g \gt 0の塔が\\
平面に垂直に立っている。この平面上にあってA,Qとは異なる点Pから2つの\\
塔の先端を見上げる角度が等しくなる状況を考える。ただし、h ≠ gとする。\\
\\
(1)点Qの座標が(T,1) (ただしT \gt 0)のとき、2つの塔を見上げる角度が等しく\\
なるような点Pは、中心の座標が(\boxed{\ \ (あ)\ \ },\boxed{\ \ (い)\ \ })、半径が\boxed{\ \ (う)\ \ }の円周上にある。\\
\\
(2)2つの塔を見上げる角度が等しくなるような点Pのうち、y軸上にあるものが\\
ただ1つあるとする。このときhとgの間には不等式\boxed{\ \ (え)\ \ }が成り立ち、\\
点Q(x,y)は2直線y=\boxed{\ \ (お)\ \ }, y=\boxed{\ \ (か)\ \ }のいずれかの上にある。\\
\\
(3)2つの塔を見上げる角度が等しくなるような点Pのうち、x軸上にあるものが\\
ただ1つであるとする。このとき点Q(x,y)は方程式\\
\boxed{\ \ (き)\ \ }x^2+\boxed{\ \ (く)\ \ }x+\boxed{\ \ (け)\ \ }y^2+\boxed{\ \ (こ)\ \ }y=1\\
で表される2次曲線上Cの上にある。Cが楕円であるのはhとgの間に不等式\boxed{\ \ (さ)\ \ }\\
が成り立つときであり、そのときCの2つの焦点の座標は(\boxed{\ \ (し)\ \ },\boxed{\ \ (す)\ \ }),\\
(\boxed{\ \ (せ)\ \ },\boxed{\ \ (そ)\ \ })である。\boxed{\ \ (さ)\ \ }が成り立たないときCは双曲線となり、\\
その2つの焦点の座標は(\boxed{\ \ (た)\ \ },\boxed{\ \ (ち)\ \ }),(\boxed{\ \ (つ)\ \ },\boxed{\ \ (て)\ \ })である。\\
さらに\frac{h}{g}=\boxed{\ \ (と)\ \ }のときCは直角双曲線となる。
\end{eqnarray}

2021慶應義塾大学医学部過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題020〜東京工業大学2016年度理系数学第5問〜媒介変数で表された曲線の追跡と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#東京工業大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
次のように媒介変数表示されたxy平面上の曲線をCとする。
$\left\{\begin{array}{1}
x=3\cos t-\cos3t
y=3\sin t-\sin3t
\end{array}\right.$
ただし、$0 \leqq t \leqq \frac{\pi}{2}$である。
(1)$\frac{dx}{dt}$および$\frac{dy}{dt}$を計算し、Cの概形を図示せよ。
(2)Cとx軸とy軸で囲まれた部分の面積を求めよ。

2016東京工業大学理系過去問
この動画を見る 
PAGE TOP