【数Ⅲ】【微分とその応用】n次導関数基本 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【微分とその応用】n次導関数基本 ※問題文は概要欄

問題文全文(内容文):
次の関数の第3次導関数を求めよ。
y= √ (2x+1)
以下、略

次のことが成り立つことを証明せよ。
y= x√ (1+x²)のとき、(1+x²)y'' + xy' = 4y
以下、略
チャプター:

0:00 本編開始

単元: #微分とその応用#微分法#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数の第3次導関数を求めよ。
y= √ (2x+1)
以下、略

次のことが成り立つことを証明せよ。
y= x√ (1+x²)のとき、(1+x²)y'' + xy' = 4y
以下、略
投稿日:2025.02.15

<関連動画>

福田の数学〜東北大学2023年理系第2問〜三角方程式の解の個数とその極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#三角関数とグラフ#関数と極限#微分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 関数f(x)=$\sin3x$+$\sin x$について、以下の問いに答えよ。
(1)f(x)=0 を満たす正の実数$x$のうち、最小のものを求めよ。
(2)正の整数$m$に対して、f(x)=0を満たす正の実数$x$のうち、$m$以下のものの個数を$p(m)$とする。極限値$\displaystyle\lim_{m \to \infty}\frac{p(m)}{m}$ を求めよ。

2023東北大学理系過去問
この動画を見る 

山口大 3次方程式の解の個数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
05年 山口大学

次の方程式 $x^3-kx+2=0$において$k$ が実数であるときの実数解の個数を求めよ。
この動画を見る 

福田のおもしろ数学463〜2定点を見込む角を最大にする方法

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

図のように点$P$を$y$軸の正の部分を

動かすとき、

$\theta$が最大となる点$P$の位置は?

$2$通りの解答を考えて下さい。

図は動画内参照
この動画を見る 

【割り算の微分】商の微分の導出について解説しました!【数学III】

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 3rd School
問題文全文(内容文):
商の微分の導出について解説します。
この動画を見る 

高校数学:数学検定準1級2次:問題7 関数の増減と変曲点

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#微分法#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$f(x)=\displaystyle \frac{2x-1}{x^2-x+1}$

について、次の問いに答えなさい。
(1) $f(x)$の増減を調べ、その極値を求めなさい。また、極値をとるときのxの値も求めなさい。
(2) $xy$平面における曲線$y=f(x)$は3個の変曲点をもちます(このことを証明する必要はありません)。これらの変曲点の座標をすべて求めなさい。
この動画を見る 
PAGE TOP