指数関数 2次関数 大分大 - 質問解決D.B.(データベース)

指数関数 2次関数 大分大

問題文全文(内容文):
$y=9^x+\dfrac{1}{9^x}-4a\left(3^x+\dfrac{1}{3^x}\right)$である.
$y$の最小値とそのときの$x$の値を$a$を用いて表せ.

2018大分大過去問
単元: #数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=9^x+\dfrac{1}{9^x}-4a\left(3^x+\dfrac{1}{3^x}\right)$である.
$y$の最小値とそのときの$x$の値を$a$を用いて表せ.

2018大分大過去問
投稿日:2020.06.11

<関連動画>

日大山形 (改)円と角 2通りで解説

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle x=?$
*図は動画内参照

日本大学山形高等学校(改)
この動画を見る 

慶應義塾の入試問題 魔法見抜ける?

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#文章題#文章題その他#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
等式を次のように変形したが最後の行が間違っている。
間違いの原因は何行目から何行目の変形か。理由とともに答えよ。
(1)$x^2+2x+3=x^2+x$
(2)$x^2+7x+12 = x^2+6x+9$
(3)$(x^2+7x+12) \div x = (x^2+6x+9) \div x$
(4)$(x+3)(x+4) \div x = (x+3)^2 \div x$
(5)$(x+4) \div x = (x+3) \div x $
(6)$x+4 = x+3$
4=3
この動画を見る 

【数Ⅰ】【2次関数】2次関数の対称移動1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の直線、放物線を、x軸、y軸、原点に関して、それぞれ対称移動して得られる直線、放物線の方程式を求めよ。
(1)y=-x+1
(2)y=2x²+x
(3)y=-x²-x-6
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第3問〜円の外接円の半径と円周上の点と原点の距離の最大最小

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#点と直線#円と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{3}}\ O(0,0),\ A(0,1),\ B(p,q)$を座標平面上の点とし、pは0でないとする。
AとBを通る直線をlとおく。Oを中心としlに接する円の面積を$D_1$で表す。
また、3点O,A,Bを通る円周で囲まれる円の面積を$D_2$とおく。次の問いに答えよ。
(1)$D_1$を$p,q$を使って表せ。
(2)点$(2,2\sqrt3)$を中心とする半径1の円周をCとする。点BがC上を動くときの
$D_1$と$D_2$の積$D_1D_2$の最小値と最大値を求めよ。

2022早稲田大学教育学部過去問
この動画を見る 

昭和(医)3次方程式解と係数の関係・要工夫

アイキャッチ画像
単元: #数Ⅰ#数と式#大学入試過去問(化学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^3-x^2-x-1=0$の3つの解を$\alpha,\beta,\delta$とする.
$\dfrac{1}{(\alpha-2)(\beta-2)},\dfrac{1}{(\beta-2)(\delta-2)},$
$\dfrac{1}{(\delta-2)(\alpha-2)}$
を解にもつ3次方程式(3次の係数は1)求めよ.
この動画を見る 
PAGE TOP