【入試は高校数学へのパスポート!】文字式:石川県高校入試~全国入試問題解法 - 質問解決D.B.(データベース)

【入試は高校数学へのパスポート!】文字式:石川県高校入試~全国入試問題解法

問題文全文(内容文):
入試問題 石川県の高校

$x=\sqrt{ 7 }+\sqrt{ 2 } $
$y=\sqrt{ 7 }-\sqrt{ 2 } $
のとき
$x^2-y^2$の値を求めなさい。
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)#石川県公立高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 石川県の高校

$x=\sqrt{ 7 }+\sqrt{ 2 } $
$y=\sqrt{ 7 }-\sqrt{ 2 } $
のとき
$x^2-y^2$の値を求めなさい。
投稿日:2020.11.23

<関連動画>

【思考せよ、推定せよ!】平方根:江戸川学園取手高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)#江戸川学園取手高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \sqrt{2023}-\sqrt{700}$を計算しなさい.

江戸川学園取手高等学校過去問
この動画を見る 

高等学校入学試験予想問題:洛南高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#空間図形#1次関数#2次関数#平面図形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ \left(4-\dfrac{7}{3}\right)\times \left(-\dfrac{3}{5}+\dfrac{1}{2}\right)$を計算せよ.
(2)$ \ell:y=(a+2)x+b-1$
$ m:y=bx-a^2 $について,
$ a=\sqrt2,b=1$のとき,$ \ell,m$の交点は?
(3)$ a=\sqrt5-\sqrt3,b=\sqrt5+\sqrt3 $のとき,$ a^2-ab-b^2$の値は?

$ \boxed{2}$

図のように,2点$ A,B $が$ y-ax^2 $のグラフ上にあり,$ A $の座標は$ (3,27)$,$B$のx座標は-2である.
3点$ C,D,E $は直線$ OA $上,$ \triangle OBC,\triangle BCF,\triangle CFD,\triangle FDG,
\triangle DGE,\triangle GEA $の面積はすべて等しい.
このとき,次の問いに答えよ.
(1)点$ B$のy座標を求めよ.
(2)点$ C $の座標を求めよ.
(3)直線$ EG $の傾きを求めよ.

$ \boxed{3}$

図のように,底面の半径が3cm,母線の長さが5cmの円錐の中に半径の等しい2つの球$ P,Q $があります.
2つの球$ P,Q $は互いに接し,円錐の底面と側面に接しているとき,次の問いに答えなさい.
ただし,2つの球の中心と,円錐の頂点と,円錐の底面の中心は同じ平面上にあるものとする.
(1)球$ P$の半径を求めよ.
(2)円錐の体積は,$ P $の体積の何倍か.
(3)球$ P $と円錐の側面が接する点を$ A $とする.
点$ A $を通り,円錐の底面に平行な平面で球$ P $を切断するとき,球$ P $の切断面の面積を求めよ.
この動画を見る 

【中学数学】ルートの問題演習~代入する問題のテクニック~ 2-11【中3数学】

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$x=2-\sqrt{3}$のとき、$x^2-4x-1$の値を求めよ
この動画を見る 

ルートが入っている等式の変形  2025早稲田本庄

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 数学を数楽に
問題文全文(内容文):
(早稲田本庄2025)
$\sqrt{a+b}+\sqrt{a-b}=2$
のとき,$a$を$b$の式で表せ.
ただし,$0<b<a<2$とする.
この動画を見る 

【高校受験対策/数学】死守-89

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#式の計算(展開、因数分解)#平方根#空間図形#確率#2次関数#円#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守89

①$-3-(-7)$を計算しなさい。

②$8-(-3)^2$を計算しなさい。

③$(-9ab^2)×2a÷(-3ab)$を計算しなさい。

④$(\sqrt{7}+\sqrt{5})(\sqrt{7}-\sqrt{5})$を計算しなさい。

⑤$x^2-3x-18$を因数分解しなさい。

⑥絶対値が$4$より小さい整数の個数を求めなさい。

⑦右の図のア~ウは、関数$y=-2x^2、y=x^2$および$y=\frac{1}{2}x^2$のグラフを同じ座標軸を使ってかいたものです。
$y=x^2$のグラフをア~ウから一つ選びなさい。

⑧右の図のような、半径$5cm$、中心角$90°$のおうぎ形$OAB$があります。
このおうぎ形を直線$OA$を回転の軸として1回転させてできる立体の体積を求めなさい。

⑨大小2つのさいころを同時に投げるとき、出る目の数の和がちょうど$5$以下となる確率を求めなさい。
ただしさいころの$1$から$6$までの目の出方は同様に確からしいものとします。

この動画を見る 
PAGE TOP