【数Ⅲ】【微分】f'(x)+f(x)=4xe^{-x}sin2x, f(0)=0を満たすとする(1) g(x)=e^xf(x)とおくとg'(x)=4xsin2xとなることを示せ(2) f(x)を求めよ - 質問解決D.B.(データベース)

【数Ⅲ】【微分】f'(x)+f(x)=4xe^{-x}sin2x, f(0)=0を満たすとする(1) g(x)=e^xf(x)とおくとg'(x)=4xsin2xとなることを示せ(2) f(x)を求めよ

問題文全文(内容文):
f(x) は微分可能な関数で $f'(x) + f(x) = 4xe^{-x} \sin 2x$,$f(0) = 0$ を満たすとする。

(1)$g(x) = e^x f(x)$とおくと、$g'(x) = 4x \sin 2x$ となることを示せ。

(2) f(x)を求めよ。
チャプター:

0:00 (1)解説
0:57 (2)解説
2:12 エンディング

単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
f(x) は微分可能な関数で $f'(x) + f(x) = 4xe^{-x} \sin 2x$,$f(0) = 0$ を満たすとする。

(1)$g(x) = e^x f(x)$とおくと、$g'(x) = 4x \sin 2x$ となることを示せ。

(2) f(x)を求めよ。
投稿日:2026.01.13

<関連動画>

福田のおもしろ数学236〜不等式で表された領域の面積

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
不等式 $2x^2-2xy+y^2 \leqq 1$ の表す領域の面積を求めよ。
この動画を見る 

大学入試問題#124 高知大学(2020) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{7}{2}}^{\frac{9}{2}}\displaystyle \frac{2^x}{2^x+\sqrt{ 2 }}\ dx$を計算せよ。

出典:2020年高知大学 入試問題
この動画を見る 

大学入試問題#435「基本的な性質が盛り沢山の良問!!」 信州大学(2014) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{3\sin\theta-\sin3\theta}{1+\cos\theta}d\theta$

出典:2014年信州大学理学部後期 入試問題
この動画を見る 

大学入試問題#395「使う技は、関数から・・・」 大阪市立大学2009 #極限 誘導は概要欄

アイキャッチ画像
単元: #関数と極限#積分とその応用#関数の極限#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)
$0 \leqq x \leqq \displaystyle \frac{\pi}{2}$のとき
$\sin\ x \geqq \displaystyle \frac{2}{\pi}x$を示せ

(2)
$\displaystyle \lim_{ n \to \infty } \displaystyle \int_{0}^{\frac{\pi}{2}} e^{-n\ \sin\ x}dx=0$を示せ

出典:2009年大阪市立大学 入試問題
この動画を見る 

#会津大学(2023) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-2}^{1} x\sqrt{ x+3 }\ dx$

出典:2023年会津大学
この動画を見る 
PAGE TOP