大学入試問題#300 新潟大学2010 #定積分 #極限 - 質問解決D.B.(データベース)

大学入試問題#300 新潟大学2010 #定積分 #極限

問題文全文(内容文):
$F(x)=\displaystyle \int_{0}^{x}\sqrt{ 1+e^{2t} }\ dt$のとき
$\displaystyle \lim_{ x \to \infty }\{F(x)-e^x\}$を求めよ

出典:2010年新潟大学 入試問題
チャプター:

00:00 問題紹介
00:10 本編スタート
08:57 作成した解法①
09:08 作成した解答②
09:20 エンディング

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学
指導講師: ますただ
問題文全文(内容文):
$F(x)=\displaystyle \int_{0}^{x}\sqrt{ 1+e^{2t} }\ dt$のとき
$\displaystyle \lim_{ x \to \infty }\{F(x)-e^x\}$を求めよ

出典:2010年新潟大学 入試問題
投稿日:2022.09.04

<関連動画>

福田の数学〜余りにも長い文章題の攻略ポイントは〜慶應義塾大学2023年総合政策学部第6問〜長文問題と1次不等式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{6}}$まず、1期目の交渉案の分配値が$\textrm{A}$と$\textrm{B}$共に紛争で期待できる価値以上であれば、交渉案を受け入れ紛争を起こさず、期待できる価値未満であれば紛争を起こすものとすると、$\textrm{A}$は自らの分配値が$\displaystyle\frac{\boxed{ア}}{35}$以上であれば交渉案を受け入れ、$\textrm{B}$は$\textrm{A}$の分配値が1以下であれば交渉権を受け入れる。また紛争が起きた場合には、2期目と3期目に$\textrm{A}$と$\textrm{B}$が期待できる価値は1期目に期待できる価値と同一とする。\begin{eqnarray}\end{eqnarray}

もし1期目に交渉が妥結した場合は、2期目に改めて交渉が行われ、$\textrm{A}$の分配値が$\displaystyle\frac{\boxed{イ}}{35}$以上で$\displaystyle\frac{\boxed{ウ}}{35}$以下ならば、$\textrm{A}$と$\textrm{B}$ともに紛争で期待できる価値以上なので$\textrm{A}$と$\textrm{B}$ともに交渉案を受け入れ紛争を起こさず、そうでない場合には紛争を起こし、その場合には3期目に$\textrm{A}$と$\textrm{B}$が期待できる価値は2期目に期待できる価値と同一とする。\begin{eqnarray}\end{eqnarray}

もし2期目に交渉が妥結した場合は、3期目に改めて交渉が行われ、$\textrm{A}$の分配値が$\displaystyle\frac{\boxed{エ}}{35}$以上で$\displaystyle\frac{\boxed{オ}}{35}$以下ならば、$\textrm{A}$と$\textrm{B}$ともに紛争で期待できる価値以上なの$\textrm{A}$と$\textrm{B}$共に交渉案を受け入れ紛争を起こさず、\begin{eqnarray}\end{eqnarray}

以下では、各期において交渉が妥結した場合には、$\textrm{A}$の分配値は$\textrm{A}$と$\textrm{B}$共に受け入れられる$\textrm{A}$の分配値の上限値と下限値の中間に定まるものと仮定しよう。すると、$\textrm{A}$が得られると期待できる価値の3期分の合計は、3期すべてで交渉が妥協した場合$\displaystyle\frac{\boxed{カ}}{35}$となり、1期目に紛争が起きた場合$\displaystyle\frac{\boxed{キ}}{35}$であり、2期目に紛争が起きた場合$\displaystyle\frac{\boxed{ク}}{35}$であり、3期目に紛争が起きた場合$\displaystyle\frac{\boxed{ケ}}{35}$となる。\begin{eqnarray}\end{eqnarray}

また、紛争コストが$\textrm{A}$と$\textrm{B}$共に$\displaystyle\frac{2}{5}$に増加した場合、$\textrm{A}$が得られると期待できる価値の3期分の合計は、3期すべてで交渉が妥結した場合$\displaystyle\frac{\boxed{コ}}{70}$となり、1期目に紛争が起きた場合、$\displaystyle\frac{\boxed{サ}}{70}$であり、2期目に紛争が起きた場合$\displaystyle\frac{\boxed{シ}}{70}$となる。さらに、紛争コストが$\textrm{A}$と$\textrm{B}$共に$\displaystyle\frac{2}{5}$に増加し、問題となっている土地の価値が2期と3期で$\textrm{A}$と$\textrm{A}$共に2に増加したとすると、$\textrm{A}$が得られると期待できる価値の3期分の合計は、3期すべてで交渉が妥結した場合$\displaystyle\frac{\boxed{ス}}{70}$となり、1期目に紛争が起きた場合$\displaystyle\frac{\boxed{セ}}{70}$であり、2期目に紛争が起きた場合$\displaystyle\frac{\boxed{ソ}}{70}$となる。

2023慶應義塾大学総合政策学部過去問
この動画を見る 

大学入試問題#675「y軸回転はバームクーヘンから考えたくなる」久留米大学医学部(2010)

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#久留米大学
指導講師: ますただ
問題文全文(内容文):
$f(x)=2x\sqrt{ 2-x^2 }$
$y=f(x)$のグラフと$x$軸とで囲まれる図形を$y$軸の周りに回転させてできる立体の体積を求めよ

出典:2010年久留米大学医学部 入試問題
この動画を見る 

中学生でも解ける京大の入試問題!解けますか?【数学 入試問題】【京都大学】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
1歩で1段または2段のいずれかで階段を昇るとき、1歩で2段昇ることは連続しないものとする。15段の階段を昇る昇り方は何通りあるか。

京都大過去問
この動画を見る 

福田の数学〜東京慈恵会医科大学2022年医学部第4問〜複素数平面と図形

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#平面上の曲線#複素数平面#方べきの定理と2つの円の関係#図形と方程式#点と直線#2次曲線#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
複素数平面上の点zが原点を中心とする半径1の円周上を動くとき、$w=z+\frac{2}{z}$
で表される点wの描く図形をCとする。Cで囲まれた部分の内部(ただし、
境界線は含まない)に定点$\alpha$をとり、$\alpha$を通る直線lがCと交わる2点を$\beta_1,\beta_2$とする。
(1)$w=u+vi$(u,vは実数)とするとき、uとvの間に成り立つ関係式を求めよ。
(2)点$\alpha$を固定したままlを動かすとき、積$|\beta_1-\alpha|・|\beta_2-\alpha|$が最大となる
ようなlはどのような直線のときか調べよ。

2022東京慈恵会医科大学医学部過去問
この動画を見る 

東京医科大 不等式

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt{ n+1 }-\sqrt{ n } \gt \displaystyle \frac{1}{100}$を満たす最大の自然数$n$を求めよ

出典:2009年東京医科大学 過去問
この動画を見る 
PAGE TOP