【高校数学】数Ⅰ-27 命題① - 質問解決D.B.(データベース)

【高校数学】数Ⅰ-27 命題①

問題文全文(内容文):
◎a,b,cは実数、dは自然数とする。
次の命題の真偽を調べ、偽のときは判例を1つ示そう。
①$a=0$ならば$ab=0$
②$a^2=b^2$ならば$a=b$
③$a<2$ならば$|a|<4$
④dは2倍の倍数 ならば dの4の倍数
⑤$|a|<3$ならば$a<3$
⑥dは18の約数ならばdは36の約数
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎a,b,cは実数、dは自然数とする。
次の命題の真偽を調べ、偽のときは判例を1つ示そう。
①$a=0$ならば$ab=0$
②$a^2=b^2$ならば$a=b$
③$a<2$ならば$|a|<4$
④dは2倍の倍数 ならば dの4の倍数
⑤$|a|<3$ならば$a<3$
⑥dは18の約数ならばdは36の約数
投稿日:2014.07.05

<関連動画>

6乗根をはずせ!

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$6$乗根をはずせ.
$\sqrt[6]{99+70\sqrt2}$
この動画を見る 

福田の数学〜明治大学2022年理工学部第2問〜平面図形の計量

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#英語(高校生)#平面図形#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#明治大学#数学(高校生)#明治大学
指導講師: 福田次郎
問題文全文(内容文):
平面上の長さ3の線分AB上に、$AP=t\ (0 \lt t \lt 3)$を満たす点Pをとる。
中心を$O$とする半径1の円Oが、線分ABと点Pで接しているとする。
$\alpha=\angle OAB,\ \beta=\angle OBA$
とおく。$\tan\alpha,\ \tan\beta,\tan(\alpha+\beta)$を$t$で表すと、
$\tan\alpha=\boxed{あ},\ \tan\beta=\boxed{い},$
$\ \tan(\alpha+\beta)=\boxed{う}$である。
$0 \lt \alpha+\beta \lt \frac{\pi}{2}$であるようなtの範囲は$\boxed{え}$である。
tは$\boxed{え}$の範囲にあるとする。点$A,\ B$から円Oに引いた接線の接点のうち、
Pでないものをそれぞれ$Q,\ R$とすると、$\angle QAB+\angle RBA \lt \pi$である。
したがって、線分AQのQの方への延長と線分BRのRの方への延長は交わり、
その交点をCとすると、円Oは三角形ABCの内接円である。
このとき、線分CQの長さをtで表すと$\ \boxed{お}$である。
また、$t$が$\boxed{え}$の範囲を動くとき、三角形ABCの面積Sの取り得る値の範囲は$\boxed{か}$である。

2022明治大学理工学部過去問
この動画を見る 

中学生向け「どっちがでかい?」

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{10^{2021}+1}{10^{2022}+1}$ VS $ \dfrac{10^{2022}+1}{10^{2023}+1}$
どちらが大きいか?
この動画を見る 

一次不等式の全パターン【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
不等式$2x-3 \gt x+1$について、次の問いに答えよ。
 (1)不等式の解が$x \gt 2$となるように、定数$a$の値を求めよ。
 (2)不等式の解が$x=5$を含むように、定数$a$の範囲を求めよ。

$a$を定数とする。2つの不等式
$\begin{eqnarray}
\left\{
\begin{array}{l}
2(3x-4)-1 \gt -3(2x+11) ・・・① \\
4x+2a \lt 3x+2 ・・・②
\end{array}
\right.
\end{eqnarray}$
をともに満たす整数$x$がちょうど3個となるような$a$の値の範囲を求めよ。
この動画を見る 

777777を素因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
777777を素因数分解せよ
この動画を見る 
PAGE TOP