大学入試問題#567「定数aの処理の難しさ」 東京大学1938 #不定積分 - 質問解決D.B.(データベース)

大学入試問題#567「定数aの処理の難しさ」 東京大学1938 #不定積分

問題文全文(内容文):
$\displaystyle \int x^2(x^2+a^2)^{\frac{1}{2}}\ dx$

出典:1938年東京帝国大学 入試問題
チャプター:

00:00 イントロ(問題紹介)
01:60 本編スタート
09:30 作成した解答①
09:40 作瀬下解答②
09:51 エンディング(楽曲提供:兄イエティさん)

単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int x^2(x^2+a^2)^{\frac{1}{2}}\ dx$

出典:1938年東京帝国大学 入試問題
投稿日:2023.06.17

<関連動画>

【数Ⅲ】【積分とその応用】不定積分置換積分、部分積分3 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の不定積分を求めよ。
(1) $\displaystyle \int \frac{\sqrt x}{\sqrt[4]{x^3}+1}~dx$
(2) $\displaystyle \int \frac{dx}{x\sqrt{x+1}}$
(3) $\displaystyle \int \log|x^2-1|~dx$
(4) $\displaystyle \int \frac{e^x}{e^x-e^{-x}}~dx$

次の不定積分を求めよ。
(1) $\displaystyle \int \tan^4x~dx$
(2) $\displaystyle \int \frac{dx}{\sin{2x}}$
(3) $\displaystyle \int \frac{1}{1-\sin x}~dx$
(4) $\displaystyle \int (\sin^3x-\cos^3x)~dx$

次の不定積分を求めよ。
(1) $\displaystyle \int e^x\cos x~dx$
(2) $\displaystyle \int e^{-x}\sin x~dx$

次の不定積分を求めよ。
(1) $\displaystyle \int \sin x\log(\cos x)~dx$
(2) $\displaystyle \int x\tan^2x~dx$
(3) $\displaystyle \int \frac{1}{1-e^x}~dx$
この動画を見る 

【数Ⅲ-144】三角関数の積分②

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(三角関数の積分➁)

Q.次の不定積分を求めよ。

⑤$\int cos3xcos2xdx$

⑥$\int cos4xsin2xdx$

⑦$\int sinxsin2xdx$

⑧$\int sin3θ cosθdθ$
この動画を見る 

練習問題1(数検準1級、教員採用試験 レベル)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#その他#数学検定#数学検定準1級#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
(1)$\int \frac{x}{cos^2x} dx$
(2)$\int \frac{x}{sin^2x} dx$
この動画を見る 

#数検準1級1次_2 #不定積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{e^x}{e^x+e^{-x}} dx$

出典:数検準1級1次
この動画を見る 

【数Ⅲ-141】分数関数の積分①

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(分数関数の積分①)

Q次の不定積分を求めよ

①$\int \frac{x-2}{x+1}dx$

➁$\int \frac{x^2-x}{x+1}dx$

③$\int \frac{-x+8}{x^2-x-6}dx$
この動画を見る 
PAGE TOP