福田の数学〜慶應義塾大学2021年医学部第1問(3)〜集合の要素の個数と2次方程式の解 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年医学部第1問(3)〜集合の要素の個数と2次方程式の解

問題文全文(内容文):
${\Large\boxed{1}}$ 
(3)整数$k$に対して、$x$の2次方程式$x^2+kx+k+35=0$の解を$\alpha_k,\beta_k$とおく。
ただし、方程式が重解をもつときは$\alpha_k=\beta_k$である。また$U=\left\{k|kは整数、かつ|k| \leqq 100 \right\}$を全体集合とし、その部分集合$A=\{k|k \in U$かつ$\alpha_k,\beta_k$はともに実数で$\alpha_k\neq \beta_k\}$
$B=\{k|k \in U$かつ$\alpha_k,\beta_k$の実数はともに2より大きい$\}$
$C=\{k|k \in U$かつ$\alpha_k,\beta_k$の実部と虚部はすべて整数$\}$
を考える。このとき$n(A)=\boxed{\ \ (か)\ \ },$$n(A \cap B)=\boxed{\ \ (き)\ \ },$$n(\bar{ A } \cap B)=\boxed{\ \ (く)\ \ },$
$n(A \cap C)=\boxed{\ \ (け)\ \ },$$n(\bar{ A } \cap C)=\boxed{\ \ (こ)\ \ }$である。ただし有限集合$X$に対してその要素の個数を$n(X)$で表す。また$\bar{ A }$は$A$の補集合である。

2021慶應義塾大学医学部過去問
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#複素数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 
(3)整数$k$に対して、$x$の2次方程式$x^2+kx+k+35=0$の解を$\alpha_k,\beta_k$とおく。
ただし、方程式が重解をもつときは$\alpha_k=\beta_k$である。また$U=\left\{k|kは整数、かつ|k| \leqq 100 \right\}$を全体集合とし、その部分集合$A=\{k|k \in U$かつ$\alpha_k,\beta_k$はともに実数で$\alpha_k\neq \beta_k\}$
$B=\{k|k \in U$かつ$\alpha_k,\beta_k$の実数はともに2より大きい$\}$
$C=\{k|k \in U$かつ$\alpha_k,\beta_k$の実部と虚部はすべて整数$\}$
を考える。このとき$n(A)=\boxed{\ \ (か)\ \ },$$n(A \cap B)=\boxed{\ \ (き)\ \ },$$n(\bar{ A } \cap B)=\boxed{\ \ (く)\ \ },$
$n(A \cap C)=\boxed{\ \ (け)\ \ },$$n(\bar{ A } \cap C)=\boxed{\ \ (こ)\ \ }$である。ただし有限集合$X$に対してその要素の個数を$n(X)$で表す。また$\bar{ A }$は$A$の補集合である。

2021慶應義塾大学医学部過去問
投稿日:2021.06.25

<関連動画>

ざ・息抜き

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt{2022}x^{\log_{2022}x}=x^2$の解の積の下3桁を求めよ.
この動画を見る 

【高校数学】  数Ⅰ-80  三角比⑤

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$0° \leqq \theta \leqq 90°$のとき
$\sin (90°+\theta)=$①____
$\cos(90°+\theta)=$②____
$\tan(90°+\theta)=$③____


$0° \leqq \theta \leqq 180°$とき
$\sin (180°-\theta)=$④____
$\cos(180°-\theta)=$⑤____
$\tan(180°-\theta)=$⑥____
⑦$\sin105°-\cos150°+\sin120°+\cos165°$の値は?
この動画を見る 

座標平面上の平行四辺形 令和4年度 2022 入試問題100題解説97問目! 愛知県

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#平面上の曲線#図形と計量#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師: 数学を数楽に
問題文全文(内容文):
四角形ABCDが平行四辺形のとき点Dのx座標は?
*図は動画内参照

2022愛知県
この動画を見る 

二重根号の方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \sqrt{x+6-6\sqrt{x-3}}+\sqrt{x+22-10\sqrt{x-3}}$
$=18$
これを解け.
この動画を見る 

ルートの計算

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt 4 = \sqrt{\quad} \times \sqrt{\quad} = $
$\sqrt 8 = \sqrt{\quad} \times \sqrt{\quad} = $
$\sqrt 9 = \sqrt{\quad} \times \sqrt{\quad} = $
$\sqrt 18 = \sqrt{\quad} \times \sqrt{\quad} = $
$\sqrt 16 = \sqrt{\quad} \times \sqrt{\quad} = $
$\sqrt 32 = \sqrt{\quad} \times \sqrt{\quad} = $
$\sqrt 50 =$
$\sqrt ▢ = \sqrt{▢} \times \sqrt{▢} = $
この動画を見る 
PAGE TOP