大学入試問題#493「詰みまでの構想力が必要」 東京理科大学(2001) #不定積分 - 質問解決D.B.(データベース)

大学入試問題#493「詰みまでの構想力が必要」 東京理科大学(2001) #不定積分

問題文全文(内容文):
$\displaystyle \int (t\sqrt{ 1+t^2 }+\displaystyle \frac{t^3}{\sqrt{ 1+t^2 }})dt$

出典:2001年東京理科大学 入試問題
チャプター:

00:00 イントロ(問題紹介)
00:18 本編スタート
07:40 作成した解答①
07:52 作成した解答②
08:02 エンディング(楽曲提供:兄いえてぃさん)

単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int (t\sqrt{ 1+t^2 }+\displaystyle \frac{t^3}{\sqrt{ 1+t^2 }})dt$

出典:2001年東京理科大学 入試問題
投稿日:2023.04.02

<関連動画>

右左どっちでできた問題がヤバい...

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
次の不定積分を求めよ
$\displaystyle
\begin{eqnarray}
\int \frac{\sin{\frac{1}{x}}}{x^3} dx
\end{eqnarray}
$
この動画を見る 

福田のおもしろ数学454〜積分に関するシュワルツの不等式の証明と等号成立条件

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#積分とその応用#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$p\leqq x \leqq q$で定義された連続関数$f(x),g(x)$に対して

$\left(\displaystyle \int_{p}^{q} f(x)^2 dx\right)\left(\displaystyle \int_{p}^{q}g(x)^2 dx \right) \geqq \left(\displaystyle \int_{p}^{q} f(x)g(x)dx\right)^2$

を証明して下さい。

また等号成立条件も調べて下さい。
   
この動画を見る 

#富山大学薬学部2018#不定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#富山大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{log(x+2)}{x^2} dx$

出典:2018年富山大学薬学部
この動画を見る 

福田の数学〜立教大学2024年理学部第1問(3)〜対数関数の極値と級数の和

アイキャッチ画像
単元: #関数と極限#積分とその応用#数列の極限#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$$nは自然数とする。
f_{ n }(x)=x^{ \frac{ 1 }{ n }}\log x (x \gt0)がx=a_{ n }で極小値をとるとき、$$
$$a_{ n }=\boxed{ エ }である。このとき、\displaystyle \sum_{i=1}^n a_n=\boxed{ オ }である。$$
この動画を見る 

大学入試問題#843「解き方色々ありそう」 #筑波大学(2013)  #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{1}{\sin x \cos x} dx$

出典:2013年筑波大学 入試問題
この動画を見る 
PAGE TOP