2024年問題 - 質問解決D.B.(データベース)

2024年問題

問題文全文(内容文):
\begin{array}{r}
アイ \\[-3pt]
\underline{\times\phantom{0}イイ}\\[-3pt]
2024 \\[-3pt]

\end{array}
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
\begin{array}{r}
アイ \\[-3pt]
\underline{\times\phantom{0}イイ}\\[-3pt]
2024 \\[-3pt]

\end{array}
投稿日:2024.01.05

<関連動画>

工夫して解こうよ!平方根の計算

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{(\sqrt 3 + 1)^2}{\sqrt 2} + \frac{(\sqrt 6 - \sqrt 2 )^2}{2 \sqrt 2}$

滝高等学校
この動画を見る 

【手元動画】数学IA 図形と計量の攻略法

アイキャッチ画像
単元: #数Ⅰ#図形と計量#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
$\triangle ABC$において、$BC=2\sqrt{ 2 }$とする。
$\angle ACB$の二等分線と辺$AB$の交点を$D$とし、$CD=\sqrt{ 2 }, \cos \angle BCD=\displaystyle \frac{3}{4}$とする。
このとき、$BD=$[ア]であり$\sin \angle ADC=\displaystyle \frac{[イウ]}{[エ]}$である。
$\displaystyle \frac{AC}{AD}=\sqrt{ オ }$であるから$AD=[カ]$である。
$\triangle ABC$の外接円の半径は$\displaystyle \frac{キ\sqrt{ ク }}{ケ}$である
この動画を見る 

tan7. 5°の華麗な求め方

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
\frac{1}{\tan\frac{\pi}{24}}の値

\end{eqnarray}
$
この動画を見る 

福田のわかった数学〜高校2年生061〜対称式と領域(3)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#図形と方程式#微分法と積分法#軌跡と領域#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 対称式と領域(3)
実数$x,\ y$が$x^2+xy+y^2=6$を
満たしながら動くとき
$x^2y+xy^2-x^2-2xy-y^2+x+y$
の取り得る値の範囲を求めよ。
この動画を見る 

連立2元9次方程式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#2次関数#複素数と方程式#式の計算(整式・展開・因数分解)#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
x^4y^5+x^5y^4=810 \\
x^3y^6+x^6y^3=945
\end{array}
\right.
\end{eqnarray}$
実数解を求めよ.
この動画を見る 
PAGE TOP