名古屋大 数列 不等式の証明 - 質問解決D.B.(データベース)

名古屋大 数列 不等式の証明

問題文全文(内容文):
$a_{1}=0,a_{n+1}=\sqrt{ a_{n}^2+5 }-1$ ($n$自然数)

(1)
$0 \leqq a_{n} \lt 2$を示せ

(2)
$a_{n} \lt a_{n+1}$を示せ

出典:名古屋大学 過去問
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=0,a_{n+1}=\sqrt{ a_{n}^2+5 }-1$ ($n$自然数)

(1)
$0 \leqq a_{n} \lt 2$を示せ

(2)
$a_{n} \lt a_{n+1}$を示せ

出典:名古屋大学 過去問
投稿日:2019.06.08

<関連動画>

福田の数学〜東京科学大学(旧・東京工業大学)2025理系第4問〜フィボナッチ数列と無限級数の和

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{4}$

数列$\{a_n\}$を

$a_1=a_2=1,a_{n+2}=a_{n+1}+a_n (n=1,2,3,\cdots)$

により定め、数列$\{b_n\}$を

$\tan b_n=\dfrac{1}{a_n}$

により定める。

ただし、$0\lt b_n \lt \dfrac{\pi}{2}$であるものとする。

(1)$n\geqq 2$に対して、$a_{n+1}a_{n-1}-{a_n}^2$を求めよ。

(2)$m\geqq 1$($m$は整数)に対して、

$a_{2m}・\tan(b_{2m+1}+b_{2m+2})$を求めよ。

(3)無限級数$\displaystyle \sum_{m=0}^{\infty} b_{2m+1}$を求めよ。

$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
この動画を見る 

整数+3乗根の展開 山梨大

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2017年 山梨大学 過去問

$n$ 自然数
${(1+\sqrt[3]{2})}^x$は整数$a_n$,$b_n$,$c_n$を用いて
$a_n+b_n\sqrt[3]{2}+\frac{c_n}{\sqrt[3]{2}}$で表せることを証明
この動画を見る 

福田のおもしろ数学267〜複雑な漸化式と特殊な数学的帰納法

アイキャッチ画像
単元: #数列#漸化式#数学的帰納法#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$a_0,a_1,a_2,\cdots$が$a_1=1,a_{m+n}=\dfrac12(a_{2m}+a_{2n})~~(m\geqq n)$で定義されている。$a_{2024}$を求めよ。($m,n$は負では無い整数)
この動画を見る 

茨城大 漸化式ぐらい自由に解かせてくれ

アイキャッチ画像
単元: #数列#学校別大学入試過去問解説(数学)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023茨城大学過去問題
一般項$a_{n}$を求めよ
$3a_{n}=S_{n}+n^2-2n+1$
$S_n=\displaystyle\sum_{k=1}^{n}a_{k}$
この動画を見る 

新潟大 漸化式 証明

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$自然数
$a_{n}=\sqrt{ n^2+1 }-n$

(1)
$\displaystyle \frac{1}{2n+1} \lt a_{n} \lt \displaystyle \frac{1}{2n}$を示せ

(2)
$a_{n} \gt a_{n+1}$を示せ

(3)
$a_{n} \lt 0.03$となる最小の自然数$n$

出典:2013年新潟大学 過去問
この動画を見る 
PAGE TOP