名古屋大 数列 不等式の証明 - 質問解決D.B.(データベース)

名古屋大 数列 不等式の証明

問題文全文(内容文):
$a_{1}=0,a_{n+1}=\sqrt{ a_{n}^2+5 }-1$ ($n$自然数)

(1)
$0 \leqq a_{n} \lt 2$を示せ

(2)
$a_{n} \lt a_{n+1}$を示せ

出典:名古屋大学 過去問
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=0,a_{n+1}=\sqrt{ a_{n}^2+5 }-1$ ($n$自然数)

(1)
$0 \leqq a_{n} \lt 2$を示せ

(2)
$a_{n} \lt a_{n+1}$を示せ

出典:名古屋大学 過去問
投稿日:2019.06.08

<関連動画>

【For you 動画-16】  数B-数学的帰納法

アイキャッチ画像
単元: #数学的帰納法#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
[i]①____のとき成り立つことを確かめる。
[ii]②____のとき成り立つと③____ して、それを使って④____ のときに成り立つことをいう。

[iii]『以上より、すべての自然数に ついて成り立つ』と書こう!

◎$n$を自然数とするとき、$3^{n} \gt 2n$を証明しよう!

[i]⑤____のとき、⑥____ より成り立つ。

[ii]⑦____のとき成り立つと⑧すると


⑩____のとき、⑪____ を考えると
$\boxed{ ⑫ }$

つまり $3^{k+1} \gt 2(k+1)$となり
$n=k+1$のとき成り立つ。

[ iii] 以上より、すべての自然数について成り立つ。
この動画を見る 

福田の数学〜大阪大学2023年理系第5問〜確率漸化式と整数の性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 1個のさいころをn回投げて、k回目に出た目を$a_k$とする。$b_n$を
$b_n$=$\displaystyle\sum_{k=1}^na_1^{n-k}a_k$
により定義し、b_nが7の倍数とする確率を$p_n$とする。
(1)$p_1$, $p_2$を求めよ。
(2)数列$\left\{p_n\right\}$の一般項を求めよ。

2023大阪大学理系過去問
この動画を見る 

【できるかな?】∑k³={n(n+1)}²/4 の導出!

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n k^3= \{ \displaystyle \frac{1}{2}n(n+1) \}^2$を示せ。
この動画を見る 

【数学B/数列】等差数列の和

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の問いに答えよ。
(1)
初項が$3$、公差が$2$である等差数列の初項から第$10$項までの和。

(2)
$-2,1,4,7,10…$の初項から第$n$項までの和。

(3)
等差数列$-1,2,5,8,11,…,50$の和。
この動画を見る 

【高校数学】数列の基礎・言葉の確認~知らないとヤバい知識~ 3-1【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1,4,9,16,25…この一般項を求めよ。
この動画を見る 
PAGE TOP