【高校数学】補集合とド・モルガンの法則~言葉の意味を正しく理解~ 1-3【数学A】 - 質問解決D.B.(データベース)

【高校数学】補集合とド・モルガンの法則~言葉の意味を正しく理解~ 1-3【数学A】

問題文全文(内容文):
補集合とド・モルガンの法則の説明動画です
単元: #数Ⅰ#数A#数と式#場合の数と確率#集合と命題(集合・命題と条件・背理法)#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
補集合とド・モルガンの法則の説明動画です
投稿日:2020.04.29

<関連動画>

【わかりやすく】平均値・中央値・最頻値の求め方を解説!(数学A 整数の性質)

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次のデータは16人の生徒の小テストの点数である。
4,6,5,4,6,3,3,10,4,6,10,6,9,5,5,10
(1)平均値を求めよ。

(2)中央値を求めよ。

(3)最頻値を求めよ。
この動画を見る 

平方根の方程式

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
方程式を解け.$x$は正の実数である.

$x+\sqrt{x(x+1)}+\sqrt{x(x+2)}+$
$\sqrt{(x+1)(x+2)}=2$
この動画を見る 

愛媛大 2次式を満たす自然数

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$m,n$を求めよ.

(1)$2m^2-n^2-mn-m+n-18$
(2)$2m^2+n^2-2mn-m+2n=21$

2016愛媛大過去問
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学IA問題1[1]。2次方程式の解に関する問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$[1]cを正の定数とする。xの2次方程式$2x^2+(4c-3)x+2c^2-c-11=0 \ldots①$
について考える。
(1)$c=1$のとき、①の左辺を因数分解すると$(\boxed{ア}\ x+\boxed{イ})(x-\boxed{ウ})$であるから、
①の解は$x=-\frac{\boxed{イ}}{\boxed{ア}}, \boxed{ウ}$である。

(2)$c=2$のとき、①の解は$x=\frac{-\ \boxed{エ}±\sqrt{\boxed{オカ}}}{\boxed{キ}}$ であり、大きい方の解を$\alpha$とすると
$\frac{5}{\alpha}=\frac{\boxed{ク}+\sqrt{\boxed{ケコ}}}{\boxed{サ}}$である。また、$m \lt \frac{5}{\alpha} \lt m+1$を満たす整数$m$は$\boxed{シ}$である。

(3)太郎さんと花子さんは、①の解について考察している。
太郎:①の解はcの値によって、ともに有理数である場合もあれば、ともに無理数
である場合もあるね。cがどのような値のときに、解は有理数になるのかな。
花子:2次方程式の解の公式の根号の中に着目すればいいんじゃないかな。

①の解が異なる2つの有理数であるような正の整数cの個数は$\boxed{ス}$個である。

2021共通テスト数学過去問
この動画を見る 

【高校受験対策】数学-死守26

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#数と式#確率#円#一次不等式(不等式・絶対値のある方程式・不等式)#文章題#文章題その他
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$-3+8$を計算しなさい.

②$2(2x - y) - (x - y)$を計算しなさい.

③$\sqrt{27}-\sqrt{63}$を計算しなさい.

④$(x + 5)(x - 3)$を展開しなさい.

⑤$a(b + 8) - (b + 8)$を因数分解しなさい.

⑥2次方程式 $x ^ 2 + x = 3$を解きなさい.

⑦右の図1の円$O$において,
$\angle x$と$\angle y$の大きさをそれぞれ求めなさい.

⑧鉛筆1本の値段を$a$円,ノート1冊の値段を$b$円とする.
「鉛筆3本とノート1冊の代金を払うと,
300円でおつりがもらえた」という数量の関係を,
不等式で表しなさい.ただし,値段は税込みとする.

⑨箱の中に,25本の当たりを含むたくさんのくじが入っている.
このくじをよくかき混ぜた後,48人がこの箱から1人1回ずつくじを引いたところ,
当たりが2本出た.箱の中に最初に入っていたくじの本数は,
およそ何本であったと推定できるか,求めなさい.

⑩ある水族館の入館料は,おとな3人と子ども2人で入ると4020円かかり,
おとな1人と子ども3人で入ると2600円かかる.
おとな1人,子ども1人の入館料をそれぞれ求めなさい.
ただし,入館料は税込みとする.

図は動画内参照
この動画を見る 
PAGE TOP