【数Ⅱ】【微分法と積分法】極値を持つ条件 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【微分法と積分法】極値を持つ条件 ※問題文は概要欄

問題文全文(内容文):
次の条件に適するように、定数aの値の範囲を、それぞれ定めよ。
(1)関数$f(x)=\frac{1}{3}x^3+ax^2+(a+2)x+1$が極値をもつ。
(2)関数$g(x)=x^3+ax^2-3ax+2$が極値をもたない。
チャプター:

0:00 オープニング
0:03 問題概要
1:28 (1)解説
2:10 (2)解説

単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件に適するように、定数aの値の範囲を、それぞれ定めよ。
(1)関数$f(x)=\frac{1}{3}x^3+ax^2+(a+2)x+1$が極値をもつ。
(2)関数$g(x)=x^3+ax^2-3ax+2$が極値をもたない。
投稿日:2025.02.23

<関連動画>

福田の数学〜慶應義塾大学2021年医学部第1問(3)〜集合の要素の個数と2次方程式の解

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#複素数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 
(3)整数$k$に対して、$x$の2次方程式$x^2+kx+k+35=0$の解を$\alpha_k,\beta_k$とおく。
ただし、方程式が重解をもつときは$\alpha_k=\beta_k$である。また$U=\left\{k|kは整数、かつ|k| \leqq 100 \right\}$を全体集合とし、その部分集合$A=\{k|k \in U$かつ$\alpha_k,\beta_k$はともに実数で$\alpha_k\neq \beta_k\}$
$B=\{k|k \in U$かつ$\alpha_k,\beta_k$の実数はともに2より大きい$\}$
$C=\{k|k \in U$かつ$\alpha_k,\beta_k$の実部と虚部はすべて整数$\}$
を考える。このとき$n(A)=\boxed{\ \ (か)\ \ },$$n(A \cap B)=\boxed{\ \ (き)\ \ },$$n(\bar{ A } \cap B)=\boxed{\ \ (く)\ \ },$
$n(A \cap C)=\boxed{\ \ (け)\ \ },$$n(\bar{ A } \cap C)=\boxed{\ \ (こ)\ \ }$である。ただし有限集合$X$に対してその要素の個数を$n(X)$で表す。また$\bar{ A }$は$A$の補集合である。

2021慶應義塾大学医学部過去問
この動画を見る 

極限 中国人民大学

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \lim_{x\to \infty}\left(\dfrac{x^2}{x^2-1}\right)^x$

中国人民大学過去問
この動画を見る 

指数タワー どっちがでかいの?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$4^{4^{4^4}}$ VS $9^{9^9}$
この動画を見る 

福田の数学〜京都大学2025理系第1問(2−1)〜定積分の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2-1)次の定積分の値を求めよ。

$\displaystyle \int_{0}^{\sqrt3} \dfrac{x\sqrt{x^2+1}+2x^3+1}{x^2+1}dx$

$2025$年京都大学理系過去問題
この動画を見る 

福田の数学〜京都大学2022年文系第4問〜線分の中点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
a,bを正の実数とする。直線$L:ax+by=1$と曲線$y=-\frac{1}{x}$との2つの交点
のうち、y座標が正のものをP、負のものをQとする。また、Lとx軸との交点を
Rとし、Lとy軸との交点をSとする。a,bが条件
$\frac{PQ}{RS}=\sqrt2$
を満たしながら動くとき、線分PQの中点の軌跡を求めよ。

2022京都大学文系過去問
この動画を見る 
PAGE TOP