【数学】中高一貫校用問題集幾何:三平方の定理:空間図形 雪だるまの高さ - 質問解決D.B.(データベース)

【数学】中高一貫校用問題集幾何:三平方の定理:空間図形 雪だるまの高さ

問題文全文(内容文):
たいちさんはお父さんと図のような雪だるまを作ることにした。雪だるまの頭は半径20㎝の球、胴体は半径30㎝の球とし、頭と胴体が接する面、および胴体と地面が接する面が半径10㎝になるように頭と胴体を削る。ただし、頭と胴体が接する面と、胴体と地面が接する面は平行であるとする。このとき、雪だるまの高さを答えなさい。
チャプター:

0:00 オープニング
0:05 問題文
0:33 解説
2:05 エンディング

単元: #数学(中学生)#中3数学#三平方の定理
教材: #TK数学#TK数学問題集2(幾何編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
たいちさんはお父さんと図のような雪だるまを作ることにした。雪だるまの頭は半径20㎝の球、胴体は半径30㎝の球とし、頭と胴体が接する面、および胴体と地面が接する面が半径10㎝になるように頭と胴体を削る。ただし、頭と胴体が接する面と、胴体と地面が接する面は平行であるとする。このとき、雪だるまの高さを答えなさい。
投稿日:2024.08.05

<関連動画>

高校生は解けるが中学生にはきつい

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$- \frac{1}{2}x^2+\frac{1}{2}x+3 = -\frac{1}{2}(x+▢)(x-▢) = -\frac{1}{2}(x-▢)^2+▢$

慶應義塾高等学校
この動画を見る 

【高校受験対策/数学】死守55

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#2次関数#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守55

①$(-3)^2+2 \times (-5)$を計算しなさい。

②$\frac{4x-3}{2}\times\frac{6x-7}{5}$を計算しなさい。

③$(-4xy)^2×(-3x)$を計算しなさい。

④連立方程式を解きなさい。
$4x-3y=-7$
$5x+9y=-13$

⑤$5\sqrt{6}+2\sqrt{24}-\frac{6\sqrt{3}}{\sqrt{2}}$を計算しなさい。

⑥二次方程式$(x+4)(x-6)=6x-39$を解きなさい。

②関数$y=ax^2$について、$x$の値が$-5$から$-3$まで増加したときの変化の割合が$2$であるとき、$a$の値を求めなさい。

⑧底面の半径が$5$ cm、高さが$6$ cmの円すいの体積を求めなさい。 ただし円周率は$\pi$とする。

⑨右の図1のように、三角形$ABC$の$\angle B$の二等分線と$\angle C$の外角$\angle ACD$の二等分線の交点を$E$とする。
$\angle BAC$の大きさが$40°$のとき、$\angle BEC$の大きさを求めなさい。

⑩右の図2で、$\angle APB=120°$のひし形$AQBP$を1つ、 定規とコンパスを用いて作図しなさい。 なお作図に用いた線は消さずに残して おきなさい。
この動画を見る 

【For you動画-4】  中3数学-二次関数

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
問いに答えよ。
①$a.b(b \lt 0)$の値は?
②直線$AB$の式は?
③図の二次関数について、 $X$の変域が$-2 \leqq x \leqq 4$のときその変域は?

④$X=t$の直線をひき、交点を図のように$P.Q$とする。
$PQ=8$となるしをだそう!
ただし-3 \leqq t \leqq 1とする。

⑤点$P$は直線$AB$上の点。
四角形$ACOB$と$\triangle ACP$の面積
が等しくなる点$P$の座標を$2$つだそう!
※図は動画内参照
この動画を見る 

【受験対策】  数学-図形②

アイキャッチ画像
単元: #数学(中学生)#中1数学#中3数学#相似な図形#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①右の[図1]のような図形を組み立てて、三角柱の形をした容器をつくりました。
この容器を立てて、中に48$cm^3$の水を入れたとき、水が容器にふれている部分の面積を 求めよう。
ただし、容器の厚みは考えないものとし、水がこぼれることもないものとします。

② 右の[図2]のように、円周上に点A、B、C、Dがあります。
ACとBDの交点をEとし、直線ABと直線CDの交点をF とします。
$\angle BAC=27°\angle AED=87°$のとき、 $\angle AFD$の大きさを求めよう。

③右の[図3]で、△ABCはAB=ACの二等辺三角形です。
辺BC上に点Dをとり、ADを折り目として折り返し、
頂点Bが移った位置をEとします。
辺BCとAEの交点をFと すると、FD=FEになりました。
$\angle BAD=42°$のとき、 $\angle ACB$の大きさを求めよう。
※図は動画内参照
この動画を見る 

【無理数とは!】平方根(有理数と無理数)後編:教科書順で内容確認~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
平方根(有理数と無理数)に関して解説していきます.
この動画を見る 
PAGE TOP