【数B】【数列】漸化式3 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数B】【数列】漸化式3 ※問題文は概要欄

問題文全文(内容文):
次の条件によって定められる
数列 $\{a_n\}$ の一般項を求めよ。
$a_1$ = $1$, $a_{n+1} = 2a_n + 3n $
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる
数列 $\{a_n\}$ の一般項を求めよ。
$a_1$ = $1$, $a_{n+1} = 2a_n + 3n $
投稿日:2025.04.05

<関連動画>

福田の一夜漬け数学〜数列・群数列(2)〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
数列 $1 2 1 3 2 $$1 4 $$3 $$2 $$1 $$5\cdots$について次を求めよ。
(1)第100項
(2)初項から第100項までの和


数列 $ \dfrac{2}{3} \dfrac{2}{5} \dfrac{4}{5} \dfrac{2}{7} \dfrac{4}{7} \dfrac{6}{7} \dfrac{2}{9}$$ \dfrac{4}{9}$$ \dfrac{6}{9}$$ \dfrac{8}{9}$$ \dfrac{2}{11}\cdots$について

次の問いに答えよ。
(1)$\displaystyle \frac{4}{15}$は第何項か。
(2)第100項は何か。
この動画を見る 

長岡技術科大 ナイスな問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
2008長岡技術科学大学過去問題
①$\displaystyle\sum_{n=2}^{\infty}\frac{1}{n^2-\frac{1}{4}}$を求めよ
②$\displaystyle\sum_{n=1}^{\infty}\frac{1}{n^2}<\frac{5}{3}$を示せ
この動画を見る 

神様の順列で瞬殺

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数列#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
52枚のトランプから1枚引いて見ないで伏せる.
残り51枚から3枚引いたら全部♡だった.
伏せた1枚が♡である確率を求めよ.
この動画を見る 

練習問題2(数検1級1次レベル? 3項間漸化式)

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$a_1=-1,a_2=1$
$a_{n+2}+2a_{n+1}+4a_n=0$
一般項$a_n$を求めよ
この動画を見る 

岡山大 ガウス記号

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=\left[\dfrac{2^n}{3}\right]$
$a_n$を$4$で割った余りを求めよ.

1993岡山大過去問
この動画を見る 
PAGE TOP