数学「大学入試良問集」【14−15 折れ線の最小値と空間ベクトル】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【14−15 折れ線の最小値と空間ベクトル】を宇宙一わかりやすく

問題文全文(内容文):
点$A(1,2,4)$を通り、ベクトル$\vec{ n }=(-3,1,2)$に垂直な平面を$\alpha$とする。
平面$\alpha$に関して同じ側に2点$P(-2,1,7),Q(1,3,7)$がある。
次の問いに答えよ。
(1)
平面$\alpha$に関して点$P$と対称な点$R$の座標を求めよ。

(2)
平面$\alpha$上の点で、$PS+QS$を最小にする点$S$の座標とそのときの最小値を求めよ。
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
点$A(1,2,4)$を通り、ベクトル$\vec{ n }=(-3,1,2)$に垂直な平面を$\alpha$とする。
平面$\alpha$に関して同じ側に2点$P(-2,1,7),Q(1,3,7)$がある。
次の問いに答えよ。
(1)
平面$\alpha$に関して点$P$と対称な点$R$の座標を求めよ。

(2)
平面$\alpha$上の点で、$PS+QS$を最小にする点$S$の座標とそのときの最小値を求めよ。
投稿日:2021.11.03

<関連動画>

【数C】空間ベクトル:球面の方程式!

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)球面x²+y²+z²-4x-6y+2z+5=0とxy平面の交わりは円になる。この円の中心と半径を求めよう。
(2)中心が点(-2,4,-2)で、2つの座標平面に接する球面Sの方程式を求めよう。また、Sと平面x=kの交わりが半径√3の円になるとき、kの値を求めよう。
この動画を見る 

【数C】ベクトルの基本⑳空間における平面上の点を係数から求める

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点A(2,0,0),B(0,1,0),C(0,0,-2)が与えられたとき、原点Oから平面ABCに下ろした垂線の足を点Hとする。このとき、点Hの座標と線分OHの長さを求めよ
この動画を見る 

福田の数学〜京都大学2023年理系第2問〜空間の位置ベクトルと直線のベクトル方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#空間ベクトル#剰余の定理・因数定理・組み立て除法と高次方程式#空間ベクトル#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 空間内の4点O,A,B,Cは同一平面上にないとする。点D,P,Qを次のように定める。点Dは$\overrightarrow{OD}$=$\overrightarrow{OA}$+$2\overrightarrow{OB}$+$3\overrightarrow{OC}$を満たし、点Pは線分OAを1:2に内分し、点Qは線分OBの中点である。さらに、直線OD上の点Rを、直線QRと直線PCが交点を持つように定める。このとき、線分ORの長さと線分RDの長さの比OR:RDを求めよ。

2023京都大学理系過去問
この動画を見る 

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IIB第4問〜空間ベクトルと四面体の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#空間ベクトル#空間ベクトル#センター試験・共通テスト関連#センター試験#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large第4問}$
点$O$を原点とする座標空間に2点
$A(3, 3, -6),$ $B(2+2\sqrt3,$ $2-2\sqrt3, -4)$
をとる。3点$O,A,B$の定める平面を$\alpha$とする。また、$\alpha$に含まれる点$C$は

$\overrightarrow{ OA } \bot \overrightarrow{ OC },$ $\overrightarrow{ OB }・\overrightarrow{ OC }=24$ $\cdots$①

を満たすとする。

(1) $|\overrightarrow{ OA }|=\boxed{\ \ ア\ \ }\sqrt{\boxed{\ \ イ\ \ }},$ $|\overrightarrow{ OB }|=\boxed{\ \ ウ\ \ }\sqrt{\boxed{\ \ エ\ \ }}$であり、
$\overrightarrow{ OA }・\overrightarrow{ OB }=\boxed{\ \ オカ\ \ }$である。

(2)点$C$は平面$\alpha$上にあるので、実数$s,$ $t$を用いて、$\overrightarrow{ OC }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$と
表すことができる。このとき、①から$s=\displaystyle \frac{\boxed{\ \ キク\ \ }}{\boxed{\ \ ケ\ \ }},$ $t=\boxed{\ \ コ\ \ }$である。
したがって、$|\overrightarrow{ OC }|=\boxed{\ \ サ\ \ }\sqrt{\boxed{\ \ シ\ \ }}$である。

(3)$\overrightarrow{ CB }=\left(\boxed{\ \ ス\ \ }, \boxed{\ \ セ\ \ }, \boxed{\ \ ソタ\ \ }\right)$である。したがって、平面$\alpha$上の
四角形$OABC$は$\boxed{\ \ チ\ \ }$。
$\boxed{\ \ チ\ \ }$に当てはまるものを、次の⓪~④のうちから一つ選べ。
ただし、少なくとも一組の対辺が平行な四角形を台形という。

⓪正方形である
①正方形ではないが、長方形である
②長方形ではないが、平行四辺形である
③平行四辺形ではないが、台形である
④台形ではない

$\overrightarrow{ OA } \bot \overrightarrow{ OC }$であるので、四角形$OABC$の面積は$\boxed{\ \ ツテ\ \ }$である。

(4)$\overrightarrow{ OA } \bot \overrightarrow{ OD },$ $\overrightarrow{ OC }・\overrightarrow{ OD }=2\sqrt6$かつ$z$座標が1であるような点$D$の座標は
$(\boxed{\ \ ト\ \ }+\displaystyle \frac{\sqrt{\boxed{\ \ ナ\ \ }}}{\boxed{\ \ ニ\ \ }},$$ \boxed{\ \ ヌ\ \ }+\displaystyle \frac{\sqrt{\boxed{\ \ ネ\ \ }}}{\boxed{\ \ ノ\ \ }}, 1)$
である。このとき$\angle COD=\boxed{\ \ ハヒ\ \ }°$である。
3点$O,C,D$の定める平面を$\beta$とする。$\alpha$と$\beta$は垂直であるので、三角形
$ABC$を底面とする四面体$DABC$の高さは$\sqrt{\boxed{\ \ フ\ \ }}$である。したがって、
四面体$DABC$の体積は$\boxed{\ \ ヘ\ \ }\sqrt{\boxed{\ \ ホ\ \ }}$ である。

2020センター試験過去問
この動画を見る 

福田の数学〜上智大学2021年理工学部第4問〜空間ベクトルと曲線の追跡

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#微分とその応用#微分法#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$立方体OADB-CFGEを考える。$0 \leqq x \leqq 1$となる実数xに対し、
$\overrightarrow{ OP }=x\ \overrightarrow{ OG }$と
なる点Pを考え、$\angle APB=\theta$とおく。

(1)$x=0$のとき、$\theta=\boxed{\ \ し\ \ }$である。また、$x=1$のとき、$\theta=\boxed{\ \ す\ \ }$である。

$\boxed{\ \ し\ \ }\ ,\boxed{\ \ す\ \ }$の選択肢
$(\textrm{a})0  (\textrm{b})\frac{\pi}{6}  (\textrm{c})\frac{\pi}{3}  (\textrm{d})\frac{\pi}{2}$
$(\textrm{e})\frac{2}{3}\pi  (\textrm{f})\frac{5}{6}\pi  (\textrm{g})\pi $

(2)$0 \lt x \lt 1$の範囲で$\theta=\frac{\pi}{2}$となるxの値は、$x=\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }}$である。

(3)$y=\cos\theta$とおき、yをxの関数と考える。このとき、yをxで表せ。また、
$0 \leqq x \leqq 1$の範囲で、xy平面上にそのグラフを描け。ただし、増減・凹凸・
座標軸との共有点・極値・変曲点などを明らかにせよ。

2021上智大学理工学部過去問
この動画を見る 
PAGE TOP