数学「大学入試良問集」【14−15 折れ線の最小値と空間ベクトル】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【14−15 折れ線の最小値と空間ベクトル】を宇宙一わかりやすく

問題文全文(内容文):
A(1,2,4)を通り、ベクトルn=(3,1,2)に垂直な平面をαとする。
平面αに関して同じ側に2点P(2,1,7),Q(1,3,7)がある。
次の問いに答えよ。
(1)
平面αに関して点Pと対称な点Rの座標を求めよ。

(2)
平面α上の点で、PS+QSを最小にする点Sの座標とそのときの最小値を求めよ。
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
A(1,2,4)を通り、ベクトルn=(3,1,2)に垂直な平面をαとする。
平面αに関して同じ側に2点P(2,1,7),Q(1,3,7)がある。
次の問いに答えよ。
(1)
平面αに関して点Pと対称な点Rの座標を求めよ。

(2)
平面α上の点で、PS+QSを最小にする点Sの座標とそのときの最小値を求めよ。
投稿日:2021.11.03

<関連動画>

福田の数学〜早稲田大学2023年人間科学部第3問〜対称点とベクトルの絶対値の最小値

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
3 空間座標における2点A(2,-3,-1)とB(3,0,1)を通る直線をl1とし、直線l1に関して点C(1,5,-2)と対称な点をDとすると、Dの座標は(    ,     ,     )である。また、点Dを通りl1と平行な直線をl2とし、点Pが直線l2上を、点Qがxy平面上の直線y=x+4 上をそれぞれ自由に動くとき、|PQ|2の最小値は    である。
この動画を見る 

【平面の方程式の基礎】平面の方程式は直線の方程式と同じように理解できます〔数学、高校数学〕

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 3rd School
問題文全文(内容文):
平面の方程式について解説します。
この動画を見る 

【数C】空間ベクトル: 四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。AP+3BP+4CP+8DP=0

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。AP+3BP+4CP+8DP=0
この動画を見る 

【数C】空間ベクトル:ベクトルの大きさの最小値

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
a=(3,4,4), b=(2,3,-1)がある。実数 t を変化させるとき、c=a+tbの大きさの最小値と、その時の t の値を求めよ。
この動画を見る 

福田の数学〜神戸大学2023年理系第4問〜平面に下ろした垂線ベクトルと四面体の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#神戸大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
4 四面体OABCがあり、辺OA, OB, OCの長さはそれぞれ13, 5, 5である。
OAOB=OAOC=1, OBOC=-11 とする。頂点OからABCを含む平面に下ろした垂線とその平面の交点をHとする。以下の問いに答えよ。
(1)線分ABの長さを求めよ。
(2)実数s, tOH=OA+sAB+tAC を満たすように定めるとき、stの値を求めよ。
(3)四面体OABCの体積を求めよ。

2023神戸大学理系過去問
この動画を見る 
PAGE TOP preload imagepreload image