虚数解の6乗が実数 - 質問解決D.B.(データベース)

虚数解の6乗が実数

問題文全文(内容文):
$ x^2-ax+a=0は虚数解\betaをもち\beta^6は実数である.aの値を求めよ.$
単元: #数Ⅱ#複素数と方程式#複素数#解と判別式・解と係数の関係
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^2-ax+a=0は虚数解\betaをもち\beta^6は実数である.aの値を求めよ.$
投稿日:2022.07.10

<関連動画>

【数Ⅱ】複素数と方程式 :分母に虚数が入ったときの計算方法を解説します!

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+B(旧課程2021年以前)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1/(3-i)をa+biの形に変形せよ。
この動画を見る 

藤田医科大学 式の最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#藤田医科大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a,b,c,dは実数である.\dfrac{(a^2+b^2)(c^2+d^2)}{(ac+bd)^2}の最小値を求めよ.$
この動画を見る 

福田の数学〜慶應義塾大学2021年理工学部第2問〜複素数と多項式の商と余り

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (1)複素数\alphaは\alpha^2+3\alpha+3=0 を満たすとする。このとき、(\alpha+1)^2(\alpha+2)^5=\boxed{\ \ キ\ \ }\\
である。また、(\alpha+2)^s(\alpha+3)^t=3となる整数s,tの組を全て求めよ。\\
\\
(2)多項式(x+1)^3(x+2)^2をx^2+3x+3で割った時の商は\boxed{\ \ ク\ \ }、余りは\boxed{\ \ ケ\ \ }である。\\
また、(x+1)^{2021}をx^2+3x+3で割った時の余りは\boxed{\ \ コ\ \ }である。
\end{eqnarray}
この動画を見る 

暗算?

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^2-\sqrt3x+1=0のとき,x^{30}+\dfrac{1}{x^{30}}の値を求めよ.$
この動画を見る 

複素数と方程式 4STEP数Ⅱ 117,118,119 解と係数の利用【ホーン・フィールドがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次方程式$(x+1)(x-1)+(x-1)(x-2)+(x-2)(x+1)=0$
の2つの解をα、βとするとき、次の式の値を求めよ。
$\dfrac{1}{(α-2)(β-2)}+\dfrac{1}{(α-1)(β-1)}+\dfrac{1}{(α+1)(β+1)}$

解の公式を用いて、次の2次式を因数分解せよ。
(1) $x^2-xy-x+2y-2$
(2) $2x^2-5xy+2y^2+x+y-1$

次の連立方程式を解け。
(1) $x+y=3$
$x+y+xy=-7$
(2) $x^2+y^2=13$
$xy=6$
この動画を見る 
PAGE TOP