福田の数学〜2023年共通テスト速報〜数学IIB第1問三角関数と対数〜三角不等式と対数が有理数とならない条件 - 質問解決D.B.(データベース)

福田の数学〜2023年共通テスト速報〜数学IIB第1問三角関数と対数〜三角不等式と対数が有理数とならない条件

問題文全文(内容文):
第一問
[ 1 ] 三角関数の値の大小関係について考えよう。
(1) x=π6のときsinx    sin2xであり、x=23πのときsinx    sin2xである。
    ,     の解答群(同じものを繰り返し選んでもよい。)
⓪< ①= ②>
(2) sinxsin2xの値の大小関係を詳しく調べよう。
sin2x-sinx=sin2x(    cosx    )
であるから、sin2x-sinx>0が成り立つことは
sinx>0かつ     cosx    >0」... ①
sinx<0かつ     cosx    <0」... ②
が成り立つことと同値である。0x2πのとき、①が成り立つようなxの値の範囲は
0<x<π    
であり、②が成り立つようなxの値の範囲は
π<x<        π
である。よって、0x2πのとき、sin2x>sinxが成り立つようなxの値の範囲は
0<x<π    , π<x<        π
である。
(3)sin3xsin4xの値の大小関係を調べよう。
三角関数の加法定理を用いると、等式
sin(α+β)-sin(αβ)=2cosαsinβ...③
が得られる。α+β=4x, αβ=3xを満たすα, βに対して③を用いることにより、sin4xsin3x>0が成り立つことは
cos    >0 かつ sin    >0」...④
または
cos    <0 かつ sin    <0」...⑤
が成り立つことと同値であることがわかる。
0xπのとき、④,⑤により、sin4xsin3xが成り立つようなxの値の範囲は
0xπ    ,         π<x<        π
である。
    ,     の解答群(同じものを繰り返し選んでもよい。)
⓪0 ①x ②2x ③3x
④4x ⑤5x ⑥6x ⑦x2 
32x ⑨52x ⓐ72x ⓑ92x
(4)(2), (3)の考察から、0xπのとき、sin3x>sin4x>sin2xが成り立つようなxの値の範囲は
π     < π    ,         π<x<        π
であることがわかる。
[ 2 ]
(1)a>0, a1, b>0のとき、logab=xとおくと、    が成り立つ。
    の解答群
xa=b ①xb=a ②ax=b
bx=a ④ab=x ⑤ba=x
(2)様々な対数の値が有理数か無理数かについて考えよう。
(i)log525=    , log927=        であり、どちらも有理数である。
(ii)log23が有理数と無理数のどちらかであるかを考えよう。
log23が有理数であると仮定すると、log23>0であるので、二つの自然数p, qを用いてlog23=pqと表すことができる。このとき、(1)によりlog23=pq    と変形できる。いま、2は偶数であり3は奇数であるので、    を満たす自然数p, qは存在しない。
したがって、log23は無理数であることがわかる。
(iii)a, bを2以上の自然数とするとき、(ii)と同様に考えると、「    ならばlogabは常に無理数である」ことがわかる。
    の解答群
⓪aが偶数 ①bが偶数 ②aが奇数 
③bが奇数 ④aとbがともに偶数、またはaとbがともに奇数 ⑤aとbのいずれか一方が偶数で、もう一方が奇数

2023共通テスト過去問
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#整数の性質#ユークリッド互除法と不定方程式・N進法#三角関数#指数関数と対数関数#三角関数とグラフ#指数関数#対数関数#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
第一問
[ 1 ] 三角関数の値の大小関係について考えよう。
(1) x=π6のときsinx    sin2xであり、x=23πのときsinx    sin2xである。
    ,     の解答群(同じものを繰り返し選んでもよい。)
⓪< ①= ②>
(2) sinxsin2xの値の大小関係を詳しく調べよう。
sin2x-sinx=sin2x(    cosx    )
であるから、sin2x-sinx>0が成り立つことは
sinx>0かつ     cosx    >0」... ①
sinx<0かつ     cosx    <0」... ②
が成り立つことと同値である。0x2πのとき、①が成り立つようなxの値の範囲は
0<x<π    
であり、②が成り立つようなxの値の範囲は
π<x<        π
である。よって、0x2πのとき、sin2x>sinxが成り立つようなxの値の範囲は
0<x<π    , π<x<        π
である。
(3)sin3xsin4xの値の大小関係を調べよう。
三角関数の加法定理を用いると、等式
sin(α+β)-sin(αβ)=2cosαsinβ...③
が得られる。α+β=4x, αβ=3xを満たすα, βに対して③を用いることにより、sin4xsin3x>0が成り立つことは
cos    >0 かつ sin    >0」...④
または
cos    <0 かつ sin    <0」...⑤
が成り立つことと同値であることがわかる。
0xπのとき、④,⑤により、sin4xsin3xが成り立つようなxの値の範囲は
0xπ    ,         π<x<        π
である。
    ,     の解答群(同じものを繰り返し選んでもよい。)
⓪0 ①x ②2x ③3x
④4x ⑤5x ⑥6x ⑦x2 
32x ⑨52x ⓐ72x ⓑ92x
(4)(2), (3)の考察から、0xπのとき、sin3x>sin4x>sin2xが成り立つようなxの値の範囲は
π     < π    ,         π<x<        π
であることがわかる。
[ 2 ]
(1)a>0, a1, b>0のとき、logab=xとおくと、    が成り立つ。
    の解答群
xa=b ①xb=a ②ax=b
bx=a ④ab=x ⑤ba=x
(2)様々な対数の値が有理数か無理数かについて考えよう。
(i)log525=    , log927=        であり、どちらも有理数である。
(ii)log23が有理数と無理数のどちらかであるかを考えよう。
log23が有理数であると仮定すると、log23>0であるので、二つの自然数p, qを用いてlog23=pqと表すことができる。このとき、(1)によりlog23=pq    と変形できる。いま、2は偶数であり3は奇数であるので、    を満たす自然数p, qは存在しない。
したがって、log23は無理数であることがわかる。
(iii)a, bを2以上の自然数とするとき、(ii)と同様に考えると、「    ならばlogabは常に無理数である」ことがわかる。
    の解答群
⓪aが偶数 ①bが偶数 ②aが奇数 
③bが奇数 ④aとbがともに偶数、またはaとbがともに奇数 ⑤aとbのいずれか一方が偶数で、もう一方が奇数

2023共通テスト過去問
投稿日:2023.01.29

<関連動画>

長崎大(医) 三角関数 方程式解の個数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
0xπのとき、方程式cos2x+4asinx+a2=0が異なる2つの解をもつためのaの範囲

出典:1988年長崎大学医学部 過去問
この動画を見る 

福田のわかった数学〜高校2年生070〜三角関数(9)三角方程式の共通解

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学II 三角関数(9) 三角方程式の共通解
次の連立方程式0x<2πに共通解をもつとき
aの値とそのときの共通解を求めよ。
{sin2x+acosx=0cos2x+asinx=0
この動画を見る 

千葉県(改) 令和4年度 数学 関数 2022 入試問題100題解説73問目!!

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
長方形ACDBと長方形CEBFは合同
直線EFの式は?
*図は動画内参照

2022千葉県
この動画を見る 

【数学Ⅱ/三角関数】 三角関数の合成

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式を、rsin(θ+α)の形で表せ。
ただし、r>0, 0α2πとする。
(1)3sinθ+cosθ

(2)sinθcosθ
この動画を見る 

【高校数学】三角関数⑧~グラフで解く最大値・最小値~ 4-10【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
次の関数の最大値と最小値を求めよ。また、そのときのθの値を求めよ。
(1) y=sinθ-1(0≦θ≦7π4)
(2) y=2cos(θ+π3)(0≦θ≦π)
この動画を見る 
PAGE TOP preload imagepreload image