数学「大学入試良問集」【14−8ベクトルと軌跡と等式・不等式】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【14−8ベクトルと軌跡と等式・不等式】を宇宙一わかりやすく

問題文全文(内容文):
平面上において同一直線上にない3点$A,B,C$があるとき、次の各問いに対して、それぞれの式をみたす点$P$の集合を求めよ。
(1)$\overrightarrow{ AP }+\overrightarrow{ BP }+\overrightarrow{ CP }=\overrightarrow{ AC }$
(2)$\overrightarrow{ AB }・\overrightarrow{ AP }=\overrightarrow{ AB }・\overrightarrow{ AB }$
(3)$\overrightarrow{ AB }・\overrightarrow{ AC }+\overrightarrow{ AP }・\overrightarrow{ AP } \leqq \overrightarrow{ AB }・\overrightarrow{ AP }+\overrightarrow{ AC }・\overrightarrow{ AP }$
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
平面上において同一直線上にない3点$A,B,C$があるとき、次の各問いに対して、それぞれの式をみたす点$P$の集合を求めよ。
(1)$\overrightarrow{ AP }+\overrightarrow{ BP }+\overrightarrow{ CP }=\overrightarrow{ AC }$
(2)$\overrightarrow{ AB }・\overrightarrow{ AP }=\overrightarrow{ AB }・\overrightarrow{ AB }$
(3)$\overrightarrow{ AB }・\overrightarrow{ AC }+\overrightarrow{ AP }・\overrightarrow{ AP } \leqq \overrightarrow{ AB }・\overrightarrow{ AP }+\overrightarrow{ AC }・\overrightarrow{ AP }$
投稿日:2021.10.17

<関連動画>

福田の数学〜明治大学2021年理工学部第3問〜単位ベクトルと関数の増減

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#大学入試解答速報#数学#明治大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ Oを原点とする座標平面上の曲線$y=\log x$を$C$とする。正の実数$t$に対し、
曲線C上の点$P(t,\log t)$におけるCの法線Lの傾きは$\boxed{\ \ か\ \ }$である。Lに平行な
単位ベクトル$\overrightarrow{ n }$で、その$x$成分が正であるものは$\overrightarrow{ n }=(\boxed{\ \ き\ \ },\ \boxed{\ \ く\ \ })$である。
さらに、$r$を正の定数とし、点Qを$\overrightarrow{ OQ }=\overrightarrow{ OP }+r\ \overrightarrow{ n }$により定めると、
Qの座標は$(\boxed{\ \ け\ \ },\ \boxed{\ \ こ\ \ })$となる。ここで点Qのx座標とy座標をtの関数と見て、
それぞれ$X(t),\ Y(t)$とおくと$X(t),\ Y(t)$の導関数を成分とするベクトル$(X'(t),\ Y'(t))$
はrによらないベクトル$(1,\ \boxed{\ \ さ\ \ })$と平行であるか、零ベクトルである。
定数$r$の取り方によって関数$X(t)$の増減の様子は変わる。$X(t)$が区間$t \gt 0$で
常に増加するようなrの値の範囲は$\boxed{\ \ し\ \ }$である。また、$r=2\sqrt2$のとき、$X(t)$は
区間$\boxed{\ \ す\ \ } \leqq t \leqq \boxed{\ \ せ\ \ }$で減少し、区間$0 \lt t \leqq \boxed{\ \ す\ \ }$と区間$t \geqq \boxed{\ \ せ\ \ }$で増加する。

2021明治大学理工学部過去問
この動画を見る 

【数C】平面ベクトル:A(4,3) B(8,5) C(5,8)のとき△ABCの面積Sを求めよう。

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
A(4,3) B(8,5) C(5,8)のとき△ABCの面積Sを求めよう。
この動画を見る 

2直線の交点の位置ベクトル(3通りの説明)

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 数学を数楽に
問題文全文(内容文):
$\overrightarrow{ OA }=\vec{ a },\overrightarrow{ OB }=\vec{ b }$のとき
$\overrightarrow{ OP }$を$\vec{ a },\vec{ b }$で表せ。
この動画を見る 

【高校数学】 数B-1 有向線分とベクトル

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右図のように①____を指定した線分を有向線分といい、Aを②____、Bを③____という。
そして、位置を気にしないで、④____と⑤____だけで定まる量をベクトルといい、有向線分ABで表されるベクトルを$\overrightarrow{ AB }$と書き表す。
また、ベクトル$\overrightarrow{ AB }$の大きさを⑥____と書き、特に大きさが1であるベクトルを⑦____ベクトルという。
※図は動画内参照
この動画を見る 

【高校数学】 数B-30 ベクトル方程式⑤

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①点A(1,-3)を通り、$\vec{ d }$=(2,6)に平行な直線と垂直な直線の方程式を求めよう。

② 直線$2x-3y-5=0$は$\vec{ d }$=(a,2)に平行、$\vec{ n }$=(2.b)に垂直で、 直線$5x+Cy+2=0$に垂直に交わる。定数a,b,Cの値を求めよう。
この動画を見る 
PAGE TOP