【数B】平面ベクトル:A(4,3) B(8,5) C(5,8)のとき△ABCの面積Sを求めよう。 - 質問解決D.B.(データベース)

【数B】平面ベクトル:A(4,3) B(8,5) C(5,8)のとき△ABCの面積Sを求めよう。

問題文全文(内容文):
A(4,3) B(8,5) C(5,8)のとき△ABCの面積Sを求めよう。
チャプター:

0:00 オープニング
0:05 問題文
0:11 面積公式の復習
0:32 問題解説
1:58 名言

単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
A(4,3) B(8,5) C(5,8)のとき△ABCの面積Sを求めよう。
投稿日:2021.01.17

<関連動画>

【数C】【ベクトルの内積】a| =|b| = 2, a - b = -2のとき、 a+bとa+tbが垂直になるように、 実数tの値を定めよ。

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
$|\vec{a}|=|\vec{b}|=2, \vec{a}\cdot\vec{b}=-2$のとき,
$\vec{a}+\vec{b}$と$\vec{a}+t\vec{b}$が垂直になるように,
実数tの値を定めよ。
この動画を見る 

福田の入試問題解説〜北海道大学2022年理系第2問〜ベクトルと漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#数列#平面上のベクトルと内積#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
aは$a\neq 1$を満たす正の実数とする。xy平面上の点$P_1,P_2,\ldots\ldots,P_n,\ldots\ldots$および
$Q_1,Q_2,\ldots\ldots,Q_n,\ldots\ldots$が、すべての自然数nについて
$\overrightarrow{ P_nP_{n+1} }=(1-a)\overrightarrow{ P_nQ_n },  \overrightarrow{ Q_nQ_{n+1} }=(0, \frac{a^{-n}}{1-a})$
を満たしているとする。また$P_n$の座標を$(x_n,y_n)$とする。
(1)$x_{n+2}$を$a, x_n, x_{n+1}$で表せ。
(2)$x_1=0, x_2=1$のとき、数列$\left\{x_n\right\}$の一般項を求めよ。
(3)$y_1=\frac{a}{(1-a)^2}, y_2-y_1=1$のとき数列$\left\{y_n\right\}$の一般項を求めよ。

2022北海道大学理系過去問
この動画を見る 

07三重県教員採用試験(数学:9番 球面,点と平面の距離)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{9}$
球面$S:x^2+y^2+z^2-4x+8z=k$の平面
$\alpha:x-2y-z=-6$による切り口の面積が
$6\pi$のとき,$k$の値を求めよ.
この動画を見る 

福田の1.5倍速演習〜合格する重要問題008〜神戸大学文系数学第1問〜対称式と軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#平面上のベクトル#図形と方程式#解と判別式・解と係数の関係#軌跡と領域#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
s,tを$s \lt t$をみたす実数とする。座標平面上の3点$A(1,2),B(s,s^2),C(t,t^2)$が一直線上にあるとする。以下の問いに答えよ。
(1)sとtの関係式を求めよ。
(2)線分BCの中点をM(u,v)とする。uとvの間の関係式を求めよ。
(3)s,tが変化するとき、vの最小値と、その時のu,s,tの値を求めよ。

神戸大学文系過去問
この動画を見る 

【高校数学】 数B-31 ベクトル方程式⑥

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①A(-1,5)、B(3,3)とする。線分ABの垂直二等分線の方程式を求めよう。

②2通線$x-2y-5=0,3x-y+4=0$のなす角aを求めよう。ただし、$0° \leqq x \leqq 90°$とする。
この動画を見る 
PAGE TOP