福田の数学〜北里大学2024医学部第1問(2)〜定積分で表された関数の最小値 - 質問解決D.B.(データベース)

福田の数学〜北里大学2024医学部第1問(2)〜定積分で表された関数の最小値

問題文全文(内容文):
(2) $0\leqq x\leqq 2\pi$において、曲線$y=\sin x$と$x$軸で囲まれた2つの部分の面積の和は$\fbox{エ}$である。
$0\leqq x\leqq 2\pi$において、曲線$y=\sin x$と曲線$y= \cos x$ で囲まれた部分の面積は$\fbox{オ}$である。また、$f(x) =\displaystyle \int_{x}^{ x+\frac{\pi}{2} } |\sin t|dt $とすると、関数$f(x)$の最小値は$\fbox{カ}$である。
単元: #大学入試過去問(数学)#積分とその応用#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(2) $0\leqq x\leqq 2\pi$において、曲線$y=\sin x$と$x$軸で囲まれた2つの部分の面積の和は$\fbox{エ}$である。
$0\leqq x\leqq 2\pi$において、曲線$y=\sin x$と曲線$y= \cos x$ で囲まれた部分の面積は$\fbox{オ}$である。また、$f(x) =\displaystyle \int_{x}^{ x+\frac{\pi}{2} } |\sin t|dt $とすると、関数$f(x)$の最小値は$\fbox{カ}$である。
投稿日:2024.11.11

<関連動画>

#高専_3#定積分#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} (e^x-e^{-x})^2(e^x+e^{-x}) dx$
この動画を見る 

この積分は解けませんでした。 By Picmin3daisukiさん

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)
$I=\displaystyle \int_{1}^{2} 2^{2^x} dx$のとき
$\displaystyle \int_{1}^{2} 2^{2x}log(2x)dx$を$I$を用いて表せ

(2)
$I=\displaystyle \int_{1}^{2} (2^{2^x}+2^{(2x+1)}log\ x) dx$を求めよ
この動画を見る 

【高校数学】筑波大学の積分の問題をその場で解説しながら解いてみた!毎日積分95日目~47都道府県制覇への道~【㊳茨城】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【筑波大学 2023】
$a,b$を実数とし、$f(x)=x+asinx, g(x)=bcosx$とする。
(1) 定積分$\displaystyle \int_{-π}^{π}f(x)g(x)dx$を求めよ。
(2)不等式
$\displaystyle \int_{-π}^{π}\{f(x)+g(x)\}^2dx≧\int_{-π}^{π}\{f(x)\}^2dx$
が成り立つことを示せ。
(3) 曲線$y=|f(x)+g(x)|$, 2直線$x=-π, x=π,$および$x$軸で囲まれた図形を$x$軸の周りに1回転させてできる回転体の体積を$V$とする。このとき不等式
$\displaystyle V≧\frac{2}{3}π^2(π^2-6)$
が成り立つことを示せ。さらに、等号が成立するときの$a,b$を求めよ。
この動画を見る 

大学入試問題#331 高校教員が作成した問題 #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{log2}^{2log2}\displaystyle \frac{dx}{\sqrt{ e^x-1 }}$
この動画を見る 

大学入試問題#594「解法が見えると計算に萎えそう」 南山大学(2019) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#南山大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} (\cos^3\theta\sin\theta)e^{-\cos\theta}d\theta$

出典:2019年南山大学 入試問題
この動画を見る 
PAGE TOP