【数C】【空間ベクトル】四面体OABCの辺OAの中点をM,辺BCを2:1に内分する点をQ、線分MQの中点をRとし、直線ORと平面ABCの交点をPとする。OPをa、b、cを用いて表せ - 質問解決D.B.(データベース)

【数C】【空間ベクトル】四面体OABCの辺OAの中点をM,辺BCを2:1に内分する点をQ、線分MQの中点をRとし、直線ORと平面ABCの交点をPとする。OPをa、b、cを用いて表せ

問題文全文(内容文):
四面体OABCの辺OAの中点をM,辺BCを2:1に内分する点をQ、線分MQの中点をRとし、直線ORと平面ABCの交点をPとする。OA=a、OB=b、OC=cとするとき、OPをa、b、cを用いて表せ
チャプター:

0:00 問題概要
0:27 3点M,Q,Rの位置ベクトルを考えていく
1:20 3点が一直線上にある、ときたら?
1:39 なぜ始点をOにしているのか?
2:29 Pが平面ABC上にある→係数を足すと1になる
3:45 解答

単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCの辺OAの中点をM,辺BCを2:1に内分する点をQ、線分MQの中点をRとし、直線ORと平面ABCの交点をPとする。OA=a、OB=b、OC=cとするとき、OPをa、b、cを用いて表せ
投稿日:2025.08.19

<関連動画>

【数C】ベクトルの基本⑲空間ベクトルにおける三角形の面積

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点A(-2,1,3),B=(-3,1,4),C=(-3,3,5)が与えられたとき、三角形ABCの面積を求めよ
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第1問(1)〜空間ベクトルと球面の方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#円と方程式#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(1)座標空間内に3点A$(2,0,0),\ B(0,4,0),\ C(0,0,8)$をとる。
2つのベクトル$\overrightarrow{ AP }$と$\overrightarrow{ BP }+\overrightarrow{ CP }$の内積が0となるような点$P(x,y,z)$
のうち、$|\overrightarrow{ AP }$|が最大となる点Pの座標を求めよ。

2022早稲田大学教育学部過去問
この動画を見る 

福田の数学〜空間における三角形の外心はどうやって求める〜杏林大学2023年医学部第2問前編〜空間ベクトルと三角形の外心

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師: 福田次郎
問題文全文(内容文):
点 O を原点とする座標空間に 3 点 A(-1,0,-2), B(-2,-2, -3 ), C(1, 2,- 2 )がある。
(a)ベクトル$\overrightarrow{ AB }と\overrightarrow{ AC }の内積は\overrightarrow{ AB }・\overrightarrow{ AC }=\fbox{ アイ }$であり、
$\angle ABCの外接円の半径は\sqrt{\fbox{ウエ}}$である。$\angle ABC$の外接円の中心を点 P とすると、
$\overrightarrow{ AP }=\fbox{オ}\overrightarrow{ AB }+\frac{\fbox{カ}}{\fbox{キ}}\overrightarrow{ AC }$
が成り立つ。

2023杏林大学過去問
この動画を見る 

福田の数学〜北里大学2024医学部第1問(3)〜空間ベクトルと四面体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
座標空間に4点A(-1, -1, -1), B(2, 0, 1), C(-2, 2, 0), D(1,0,5)がある。このとき、三角形ABCの面積は キ である。平面ABC上に点Hを直線DHが平面 ABCと垂直になるようにとると、点Hの座標は ク である。また、四面体ABCD の体積は ケ である。
この動画を見る 

福田の数学〜早稲田大学2023年人間科学部第3問〜対称点とベクトルの絶対値の最小値

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 空間座標における2点A(2,-3,-1)とB(3,0,1)を通る直線を$l_1$とし、直線$l_1$に関して点C(1,5,-2)と対称な点をDとすると、Dの座標は($\boxed{\ \ ク\ \ }$, $\boxed{\ \ ケ\ \ }$, $\boxed{\ \ コ\ \ }$)である。また、点Dを通り$l_1$と平行な直線を$l_2$とし、点Pが直線$l_2$上を、点Qが$xy$平面上の直線$y$=$-x$+4 上をそれぞれ自由に動くとき、$|\overrightarrow{PQ}|^2$の最小値は$\boxed{\ \ サ\ \ }$である。
この動画を見る 
PAGE TOP