大学入試問題#767「ほんまに茶番」 #岡山県立大学 (2018) #定積分 - 質問解決D.B.(データベース)

大学入試問題#767「ほんまに茶番」 #岡山県立大学 (2018) #定積分

問題文全文(内容文):
$I=\displaystyle \int_{0}^{\frac{\pi}{6}} \displaystyle \frac{\sin\ x}{\sqrt{ 3 }\ \sin\ x+\cos\ x} dx$

$J=\displaystyle \int_{0}^{\frac{\pi}{6}} \displaystyle \frac{\cos\ x}{\sqrt{ 3 }\ \sin\ x+\cos\ x} dx$

$I$と$J$の値を求めよ。

出典:2018年岡山県立大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#岡山県立大学
指導講師: ますただ
問題文全文(内容文):
$I=\displaystyle \int_{0}^{\frac{\pi}{6}} \displaystyle \frac{\sin\ x}{\sqrt{ 3 }\ \sin\ x+\cos\ x} dx$

$J=\displaystyle \int_{0}^{\frac{\pi}{6}} \displaystyle \frac{\cos\ x}{\sqrt{ 3 }\ \sin\ x+\cos\ x} dx$

$I$と$J$の値を求めよ。

出典:2018年岡山県立大学 入試問題
投稿日:2024.03.17

<関連動画>

大学入試問題#759「サムネみすった」 東京理科大学(2002) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{12}} \cos\ x・\cos\ 2x・\cos\ 3x\ dx$

出典:2002年東京理科大学 入試問題
この動画を見る 

福田の数学〜名古屋大学2023年文系第1問〜3次関数と2次関数のグラフ

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ aを実数とし、2つの関数$f(x)=x^3-(a+2)x^2+2a+1 $と$g(x)$=$-x^2+1$ を考える。
(1)$f(x)$-$g(x)$ を因数分解せよ。
(2)y=$f(x)$とy=$g(x)$のグラフの共有点が2個であるようなaを求めよ。
(3)aは(2)の条件を満たし、さらに$f(x)$の極大値は1よりも大きいとする。
y=$f(x)$とy=$g(x)$のグラフを同じ座標平面に図示せよ。

2023名古屋大学文系過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題084〜東北大学2018年度理系第4問〜三角形の内接円と外接円の半径の関係

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#三角比(三角比・拡張・相互関係・単位円)#三角関数#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 三角形ABCの内接円の半径をr, 外接円の半径をRとし、h=$\frac{r}{R}$とする。
また、$\angle$A=2α, $\angle$B=2β, $\angle$C=2γ とおく。
(1)h=4$\sin\alpha\sin\beta\sin\gamma$となることを示せ。
(2)三角形ABCが直角三角形のときh≦$\sqrt 2-1$が成り立つことを示せ。
また、等号が成り立つのはどのような場合か。
(3)一般の三角形ABCに対してh≦$\frac{1}{2}$が成り立つことを示せ。また等号が成り立つのはどのような場合か。

2018東北大学理系過去問
この動画を見る 

大阪市立大 微分と接線の基本問題

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#大阪市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+2x^2-4x$に$(0,k)$から引ける接線の数を求めよ

出典:大阪市立大学 過去問
この動画を見る 

大学入試問題#538「数列のバリューセット」 室蘭工業大学(2018) #数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#室蘭工業大学
指導講師: ますただ
問題文全文(内容文):
$a_1=\displaystyle \frac{1}{2}$
$a_{n+1}=\displaystyle \frac{(n+1)a_n}{n+3^na_n}$のとき
一般項$a_n$を求めよ

出典:2018年室蘭工業大学 入試問題
この動画を見る 
PAGE TOP