福田の入試問題解説〜慶應義塾大学2022年理工学部第5問〜三角比と空間図形の計量 - 質問解決D.B.(データベース)

福田の入試問題解説〜慶應義塾大学2022年理工学部第5問〜三角比と空間図形の計量

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}}\ 半径4\sqrt2の球面S上に3点A,B,Cがあり、線分AB,BC,CAの長さは\\
それぞれAB=4\sqrt6,BC=10,C=6とする。\\
(1)\cos\angle ABC=\boxed{\ \ テ\ \ }である。平面ABCで球面Sを切った切り口の円をTとする。\\
Tの半径は\boxed{\ \ ト\ \ }である。点Dが円T上を動くとき、\triangle DABの面積の最大値は\\
\boxed{\ \ ナ\ \ }である。\\
(2)球面Sの中心Oから平面ABCに下ろした垂線OHの長さは\boxed{\ \ ニ\ \ }である。\\
(3)点Eは球面S上を動くとき、三角錐EABCの体積の最大値は\boxed{\ \ ヌ\ \ }である。
\end{eqnarray}

2022慶應義塾大学理工学部過去問
単元: #数Ⅰ#大学入試過去問(数学)#空間図形#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}}\ 半径4\sqrt2の球面S上に3点A,B,Cがあり、線分AB,BC,CAの長さは\\
それぞれAB=4\sqrt6,BC=10,C=6とする。\\
(1)\cos\angle ABC=\boxed{\ \ テ\ \ }である。平面ABCで球面Sを切った切り口の円をTとする。\\
Tの半径は\boxed{\ \ ト\ \ }である。点Dが円T上を動くとき、\triangle DABの面積の最大値は\\
\boxed{\ \ ナ\ \ }である。\\
(2)球面Sの中心Oから平面ABCに下ろした垂線OHの長さは\boxed{\ \ ニ\ \ }である。\\
(3)点Eは球面S上を動くとき、三角錐EABCの体積の最大値は\boxed{\ \ ヌ\ \ }である。
\end{eqnarray}

2022慶應義塾大学理工学部過去問
投稿日:2022.06.12

<関連動画>

条件不足の連立三元二次方程式

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x,y,z)$の実数解を求めよ.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x + y + z-18 \\
x^2+y^2+z^2=108
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

ただの計算問題

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \sqrt{101^2+101^2・102^2+102^2}$
これを計算せよ.
この動画を見る 

ここ分からんかったやろ?

アイキャッチ画像
単元: #数学(中学生)#中1数学#数Ⅰ#資料の活用#データの分析#データの分析#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
四分位数
四分位範囲
箱ひげ図

解説動画です
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第3問〜円の外接円の半径と円周上の点と原点の距離の最大最小

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#点と直線#円と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ O(0,0),\ A(0,1),\ B(p,q)を座標平面上の点とし、pは0でないとする。\hspace{50pt}\\
AとBを通る直線をlとおく。Oを中心としlに接する円の面積をD_1で表す。\hspace{40pt}\\
また、3点O,A,Bを通る円周で囲まれる円の面積をD_2とおく。次の問いに答えよ。\hspace{4pt}\\
(1)D_1をp,qを使って表せ。\hspace{220pt}\\
(2)点(2,2\sqrt3)を中心とする半径1の円周をCとする。点BがC上を動くときの\hspace{24pt}\\
D_1とD_2の積D_1D_2の最小値と最大値を求めよ。\hspace{130pt}
\end{eqnarray}

2022早稲田大学教育学部過去問
この動画を見る 

中学受験 算数 洛南高校附属中学

アイキャッチ画像
単元: #算数(中学受験)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#過去問解説(学校別)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle x=?$
*図は動画内参照

洛南高等学校附属中学校
この動画を見る 
PAGE TOP