福田の入試問題解説〜慶應義塾大学2022年理工学部第5問〜三角比と空間図形の計量 - 質問解決D.B.(データベース)

福田の入試問題解説〜慶應義塾大学2022年理工学部第5問〜三角比と空間図形の計量

問題文全文(内容文):
半径$4\sqrt2$の球面S上に3点A,B,Cがあり、線分AB,BC,CAの長さはそれぞれ$AB=4\sqrt6,BC=10,C=6$とする。
(1)$\cos\angle ABC=\boxed{\ \ テ\ \ }$である。平面ABCで球面Sを切った切り口の円をTとする。
Tの半径は$\boxed{\ \ ト\ \ }$である。点Dが円T上を動くとき、$\triangle DAB$の面積の最大値は
$\boxed{\ \ ナ\ \ }$である。
(2)球面Sの中心Oから平面ABCに下ろした垂線OHの長さは$\boxed{\ \ ニ\ \ }$である。
(3)点Eは球面S上を動くとき、三角錐EABCの体積の最大値は$\boxed{\ \ ヌ\ \ }$である。

2022慶應義塾大学理工学部過去問
単元: #数Ⅰ#大学入試過去問(数学)#空間図形#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
半径$4\sqrt2$の球面S上に3点A,B,Cがあり、線分AB,BC,CAの長さはそれぞれ$AB=4\sqrt6,BC=10,C=6$とする。
(1)$\cos\angle ABC=\boxed{\ \ テ\ \ }$である。平面ABCで球面Sを切った切り口の円をTとする。
Tの半径は$\boxed{\ \ ト\ \ }$である。点Dが円T上を動くとき、$\triangle DAB$の面積の最大値は
$\boxed{\ \ ナ\ \ }$である。
(2)球面Sの中心Oから平面ABCに下ろした垂線OHの長さは$\boxed{\ \ ニ\ \ }$である。
(3)点Eは球面S上を動くとき、三角錐EABCの体積の最大値は$\boxed{\ \ ヌ\ \ }$である。

2022慶應義塾大学理工学部過去問
投稿日:2022.06.12

<関連動画>

2024山口大 1の10乗根のナイスな問題

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2Z^4+(1-\sqrt{ 5 })Z^2+2=0$であるとき
(1)$Z^{10}=1$であることを示せ
(2)$\cos \displaystyle \frac{\pi}{5} \cos \displaystyle \frac{2\pi}{5}=\displaystyle \frac{1}{4}$を示せ

出典:2024年山口大学数学 過去問
この動画を見る 

2023高校入試解説26問目 √の計算 早稲田本庄最初の一問

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\{ \frac{\sqrt2 + \sqrt3 -\sqrt5}{\sqrt{18}(\sqrt2 -1)} \}^2 \div
\{ \frac{\sqrt2(\sqrt8 + 2 )}{\sqrt{2}+ \sqrt3 + \sqrt5)} \}^2$

2023早稲田大学 本庄高等学院
この動画を見る 

福田のわかった数学〜高校1年生042〜三角比の相互関係

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$三角比の相互関係
$0° \lt \theta \lt 180°$とする。
$4\cos\theta+2\sin\theta=\sqrt2$のとき
$\tan\theta$ の値を求めよ。
この動画を見る 

【#9】【因数分解100問】基礎から応用まで!(81)〜(90)【解説付き】

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(81)$(x+1)(x^2+x+1)(x^2-x+1)$
(82)$(x+1)(x^2+1)(x^4+1)$
(83)$(a+b-1)(a-2b+c)$
(84)$(a-c)^3$
(85)$(x^2+2x-2)(x^2+2x-21)$
この動画を見る 

【高校数学】数Ⅰ-1 係数と次数

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎〔 〕内の文字に着目したとき、その係数と次数は?
①$4xy$〔y〕
[係]
[次]

②$-3a^2b$〔a〕
[係]
[次]

③$7xy^2z^3$〔xとy〕
[係]
[次]

◎同類項をまとめて、整式の次数をもとめよう。
④$3x-2x^2+9x-4$
⑤$a^2-5ab^3+3a^2-ab$

◎〔 〕内の文字に着目すると何次式?
また、そのときの定数項は?
⑥$xy^3-4xy+5$〔y〕
次式[定]


⑦$2xy^2z-x^3z^2-11y^2+5$〔xとz〕
次式[定]
この動画を見る 
PAGE TOP