【定義に従え…!】平方根:江戸川学園取手高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【定義に従え…!】平方根:江戸川学園取手高等学校~全国入試問題解法

問題文全文(内容文):
関数$y=\sqrt{x}\;$について、$x\;$の値が4から9まで増加するときの変化の割合を求めなさい。
単元: #数学(中学生)#中3数学#平方根#2次関数#高校入試過去問(数学)#江戸川学園取手高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
関数$y=\sqrt{x}\;$について、$x\;$の値が4から9まで増加するときの変化の割合を求めなさい。
投稿日:2024.10.28

<関連動画>

【高校受験対策/数学】死守-92

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#平面図形#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守92

①$12÷(-4)$を計算しなさい。

②$\sqrt{3}×\sqrt{8}$を計算しなさい。

③$(x-4)(x-5)$を展開しなさい。

④二次方程式$x^2-5x+3=0$を解きなさい。

⑤$\frac{336}{n}$の値が、ある自然数の2乗となるような自然数$n$のうち、
最も小さいものを求めなさい。

⑥右の表は、ある中学校の生徒30人が1か月に読んだ本の冊数を調べて、度数分布表に整理 したものである。
ただし、一部が汚れて度数が見えなくなっている。
この度数分布表について、3冊以上6冊未満の階級の相対度数を求めなさい。

⑦右の図のように、五角形$ABCDE$があり、$\angle BCD=105°,$$\angle CDE=110°$である。
また、頂点$A,E$における外角$B$の大きさがそれぞれ$70°,80°$であるとき、
$\angle ABC$の大きさを求めなさい。

⑧二次関数$y=\frac{5}{2}x+a$のグラフは点$(4,3)$を通る。
このグラフと$y$軸との交点の座標を求めなさい。
この動画を見る 

【高校受験対策/数学】死守71

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#平方根#比例・反比例#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守71

①$8÷4+6$を計算せよ。

②$\frac{1}{2}+\frac{9}{10}×\frac{5}{3}$を計算せよ。

④$y$は$x$に反比例し、$x=2$のとき$y=-3$である。
このとき、$y$を$x$の式で表せ。

⑤次の比例式で、$x$の値を求めよ。
$x:(4x-1)=1:x$

⑥$\sqrt{7}$より大きく$\sqrt{31}$より小さい整数をすべて書け。

⑦3つの数$a$、$b$、$c$について、$ab \lt 0$、$abc \gt 0$のとき、$a$、$b$、$c$の符号の組み合わせとして、
最も適当なものを下のア~エの中から1つ選び、記号で答えよ。
※図は動画参照

⑧次のように、1から6までの数字がくり返し並んでいる。
左から100番目の数字は何か。
1、2、3、4、5、6、1、2、3、4、5、6、1、2・・・

⑨右の図のように、$AB=AC$である。
二等辺三角形$ABC$と、頂点$A$、$C$をそれぞれ通る2本の平行な直線$l$、$m$がある。
このときの$\angle x$大きさは何度か。

この動画を見る 

【考えすぎると…!】計算:大阪教育大学附属高等学校平野校舎~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)#大阪教育大学附属高等学校平野校舎
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \sqrt{(\pi-3)^2}+\sqrt{(3-\pi)^2}$の値を,$\pi$を用いて簡単に表しなさい.
※$ \pi $は円周率を表すものとする.

大教大高校平野過去問
この動画を見る 

【数学】平方根:暗算で根号の中身を変形できない生徒がまずするべき考え方

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 理数個別チャンネル
問題文全文(内容文):
暗算で根号の中身を変形できない生徒がまずするべき考え方
この動画を見る 

平方根の利用 A

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt {1.23} = a$とする。
$\sqrt{123} + \sqrt{0.0123}$をaで表せ。

福岡大学附属大濠高等学校
この動画を見る 
PAGE TOP