大学入試問題#290 広島市立大学2010 #定積分 - 質問解決D.B.(データベース)

大学入試問題#290 広島市立大学2010 #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\pi}\displaystyle \frac{\sin\ x}{\sqrt{ 5+4\cos\ x }}dx$

出典:2010年広島市立大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#広島市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi}\displaystyle \frac{\sin\ x}{\sqrt{ 5+4\cos\ x }}dx$

出典:2010年広島市立大学 入試問題
投稿日:2022.08.24

<関連動画>

#茨城大学(2023) #極限 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{1}{x}log(\displaystyle \frac{e^x+1}{2})$

出典:2023年茨城大学
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第2問〜絶対値を含む漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$数列$\left\{a_n\right\}$は
$a_{n+1}=-|a_n|-\frac{1}{2}a_n+5\hspace{15pt}(n=1,2,3,\ldots)$
を満たしている。
(1)$a_1=\frac{1}{2}$ならば、$a_2=\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウ\ \ }},\ a_3=-\frac{\boxed{\ \ エオ\ \ }}{\boxed{\ \ カ\ \ }}$である。
(2)$-2 \leqq a_n \leqq -1$ならば$a_{n+1}$および$a_{n+2}$の取り得る値の範囲は、
それぞれ$\boxed{\ \ キ\ \ }\leqq a_{n+1} \leqq \frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }},\ -\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\leqq a_{n+1} \leqq -\boxed{\ \ シ\ \ }$である。
以下、$a_1=2+(\frac{2}{3})^{10}$とする。
(3)$a_n \lt 0$となる自然数nの内最小のものをmとすると、$m=\boxed{\ \ スセ\ \ }$である。
(4)(3)の$m$に対して、自然数kが$2k \geqq m$を満たすとき、
$a_{2k+2}=-\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}\ a_{2k}-\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}$
より
$a_{2k}=-\frac{\boxed{\ \ テト\ \ }}{\boxed{\ \ ナ\ \ }}+\frac{3}{\boxed{\ \ ニヌ\ \ }}(-\frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }})^{k-\boxed{\ \ ハ\ \ }}$
が成り立つ。

2022慶應義塾大学経済学部過去問
この動画を見る 

大学入試問題#20 群馬大医学部(2020) 対数,領域

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学
指導講師: ますただ
問題文全文(内容文):
$0 \lt x \lt 1,0 \lt y \lt 1$
$(log_xy)^2+log_y\displaystyle \frac{x^3}{y^4} \leqq 0$の表す領域を$xy$平面上に図示せよ。

出典:2020年群馬大学医学部 入試問題
この動画を見る 

福田の数学〜ポリアの壺は証明を覚えよう〜杏林大学2023年医学部第1問前編〜ポリアの壺

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
複数の玉が人った袋から玉を 1 個取り出して袋に戻す事象を考える。どの玉も同じ確率で取り出されるものとし、nを自然数として、以下の間いに答えよ。
(1) 袋の中に赤玉 1 個と黒玉 2 個が入っている。この袋の中から玉を 1 個取り出し、取り出した玉と同じ色の玉をひとつ加え、合計 2 個の玉を袋に戻すという試行を繰り返す。n回目の試行において赤玉が取り出される確率を$p_{ n }$とすると、$p_{ 2 }=\dfrac{\fbox{ア}}{\fbox{イ}}, p_{ 3 }=\dfrac{\fbox{ウ}}{\fbox{エ}}$
( 2 )袋の中に赤玉 3 個と黒玉 2 個が人っている。この袋の中から玉を 1 個取り出し、赤玉と黒玉を 1 個ずつ、合計 2 個の球を袋に戻す試行を繰り返す。n回目の試行において赤玉が取り出される確率を$p_{ n }$とすると、次式が成り立つ。
$p_{ 2 }=\dfrac{\fbox{オカ}}{\fbox{キク}}, p_{ 3 }=\dfrac{\fbox{ケコ}}{\fbox{サシ}}$
n回目の試行開始時点で袋に人っている玉の個数$M_{ n } はM_{ n }=n+\fbox{ス}$であり、この時点で袋に入っていると期待される赤玉の個数$R_{ n }はR_{ n }=M_{ n }×P_{ n }$と表される。n回目の試行において、黒玉が取り出された場合にのみ、試行後の赤玉の個数が施行前と比べて$\fbox{セ}$個増えるため、n+ 1 回目の試行開始時点で袋に入っていると期待される赤玉の個数は$R_{ n+1 }=R_{ n }+(1-P_{ n })×\fbox{セ}$となる。したがって、
$P_{ n+1 }=\dfrac{n+\fbox{ソ}}{n+\fbox{タ}}×P_{ n }+\dfrac{1}{n+\fbox{チ}}$
が成り立つ。このことから、$(n+3)×(n+\fbox{ツ})×(P_{n}-\dfrac{\fbox{テ}}{\fbox{ト}})$がnに依らず一定となる事が分かり、$\displaystyle \lim_{ n \to \infty } P_n =\dfrac{\fbox{ナ}}{\fbox{ニ}}$と求められる。

2023杏林大学医過去問
この動画を見る 

福田の数学〜中央大学2021年理工学部第4問〜定積分と不等式、極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{4}$自然数$n$に対し,$f_n(x)=x^{-1+\frac{1}{n}}(x\gt 0)$とおく.
また,正の実数$a_n$は$\displaystyle \int_{1}^{a_n}f_n(x)dx=1$満たすものとする.次の問い 
答えよ.

(1)関数$f_n(x)$の不定積分を求めよ.

(2)$a_n$の値と極限$\displaystyle \lim_{n\to\infty}a_n$を求めよ.また,正の実数$b_n$が$\displaystyle \int_{1}^{b_n}f_{n+1}(x)dx=-1$を満たすとき,$b_n$の値と極限$\displaystyle \lim_{n\to\infty}b_n$を求めよ.

(3)2以上の自然数$k$に対して$\displaystyle \int_{k-1}^{k}f_n(x)dx \gt \dfrac{1}{k}$を示し,これを利用して$a_n\lt 4$を証明せよ.

(4)$\displaystyle \int_{1}^{a_n}f_{n+1}(x)dx\lt 1$を示し,これを利用して$a_n\lt a_{n+1}$を証明せよ.

2021中央大理工学部過去問
この動画を見る 
PAGE TOP