【数学】東大理科2022大問6ガチ解説!(1)の数え上げ方(抜けもれなく数えるために) - 質問解決D.B.(データベース)

【数学】東大理科2022大問6ガチ解説!(1)の数え上げ方(抜けもれなく数えるために)

問題文全文(内容文):
東大理系数学2022大問6
Oを原点とする座標平面上で考える。0以上の整数kに対して、vec(v_k)を
vec(v_k)=(cos(2kπ/3),sin(2kπ/3))
と定める。投げたとき表と裏がどちらも1/2の確率で出るコインをN回投げて座標平面上に点X_0,X_1,X_2,…,X_Nを以下の規則(i)(ii)に従って定める。
(i)X_0はOにある。
(ii)nを1以上N以下の整数とする。X_(n_1)が定まったとし、X_nを次のように定める。
・n回目のコイン投げで表が出た場合、
vec(OX_n)=vec(OX_(n-1))+vec(v_k)
によりX_nを定める。ただし、kは1回目からn回目までのコイン投げで裏が出た回数とする。
・n回目のコイン投げで裏が出た場合、X_nをX_(n-1)と定める。
(1)N=8とする。X_8がOにある確率を求めよ。
(2)N=200とする。X_(200)がOにあり、かつ、合計200回のコイン投げで表がちょうどr回出る確率をp_rとおく。ただし0≦r≦200とする。p_rを求めよ。またp_rが最大となるrの値を求めよ。
チャプター:

00:00問題文の説明
00:40矢印で戻ってくるように考える
01:15型を作り、求め切る!

単元: #大学入試過去問(数学)#大学入試過去問(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
東大理系数学2022大問6
Oを原点とする座標平面上で考える。0以上の整数kに対して、vec(v_k)を
vec(v_k)=(cos(2kπ/3),sin(2kπ/3))
と定める。投げたとき表と裏がどちらも1/2の確率で出るコインをN回投げて座標平面上に点X_0,X_1,X_2,…,X_Nを以下の規則(i)(ii)に従って定める。
(i)X_0はOにある。
(ii)nを1以上N以下の整数とする。X_(n_1)が定まったとし、X_nを次のように定める。
・n回目のコイン投げで表が出た場合、
vec(OX_n)=vec(OX_(n-1))+vec(v_k)
によりX_nを定める。ただし、kは1回目からn回目までのコイン投げで裏が出た回数とする。
・n回目のコイン投げで裏が出た場合、X_nをX_(n-1)と定める。
(1)N=8とする。X_8がOにある確率を求めよ。
(2)N=200とする。X_(200)がOにあり、かつ、合計200回のコイン投げで表がちょうどr回出る確率をp_rとおく。ただし0≦r≦200とする。p_rを求めよ。またp_rが最大となるrの値を求めよ。
投稿日:2022.12.28

<関連動画>

福田の数学〜立教大学2022年経済学部第1問(2)〜絶対の付いた方程式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#大学入試過去問(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
|X-|X-2||=1の解をすべて求めよ
この動画を見る 

3つの整数の最大公約数!解けますか?【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#大学入試過去問(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
3つの整数、n²+2,n⁴+2,n⁶+2の最大公約数を求めよ
この動画を見る 

福田の数学〜北里大学2022年医学部第1問(4)〜放物線と2法線で囲まれた面積の最小

アイキャッチ画像
単元: #大学入試過去問(数学)#大学入試過去問(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
大問1の(4)
放物線 C:y=x²上に、2つの動点P(p,p²), Q (q, q²)がある。点PにおけるCの接線l₁と点 Q における C の接線l₂は垂直であり、 p>0であるとする。
このとき、qはpを用いてq=[ス]と表され、l₁とl₂およびCで囲まれた部分の面積Sはpを用いて S=[セ]と表される。
点PにおけるCの法線と点QにおけるCの法線の交点をRとし、 2つの線分PRとQRおよびCで囲まれた部分の面積をTとおく。 pが正の実数全体を動くとき、Tの最小値は[ソ]である。
この動画を見る 

【数学】東大理科2022大問6ガチ解説!(2)一般化して考えるとどのようになっているかを考察しながら初見で解きます!

アイキャッチ画像
単元: #大学入試過去問(数学)#大学入試過去問(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
東大理系数学2022大問6
Oを原点とする座標平面上で考える。0以上の整数kに対して、vec(v_k)を
vec(v_k)=(cos(2kπ/3),sin(2kπ/3))
と定める。投げたとき表と裏がどちらも1/2の確率で出るコインをN回投げて座標平面上に点X_0,X_1,X_2,…,X_Nを以下の規則(i)(ii)に従って定める。
(i)X_0はOにある。
(ii)nを1以上N以下の整数とする。X_(n_1)が定まったとし、X_nを次のように定める。
・n回目のコイン投げで表が出た場合、
vec(OX_n)=vec(OX_(n-1))+vec(v_k)
によりX_nを定める。ただし、kは1回目からn回目までのコイン投げで裏が出た回数とする。
・n回目のコイン投げで裏が出た場合、X_nをX_(n-1)と定める。
(1)N=8とする。X_8がOにある確率を求めよ。
(2)N=200とする。X_(200)がOにあり、かつ、合計200回のコイン投げで表がちょうどr回出る確率をp_rとおく。ただし0≦r≦200とする。p_rを求めよ。またp_rが最大となるrの値を求めよ。
この動画を見る 

【高校数学】毎日積分70日目~47都道府県制覇への道~【⑭島根】【毎日17時投稿】

アイキャッチ画像
単元: #数Ⅲ#大学入試過去問(数学)#積分とその応用#定積分#大学入試過去問(数学)#数学(高校生)#島根大学
指導講師: 理数個別チャンネル
問題文全文(内容文):
【島根大学 2023】
$a$を実数の定数、$n$を自然数とし、関数$f(x)$を$f(x)=1-ax^n$と定める。次の問いに答えよ。
(1) $\displaystyle \frac{n+5}{n+2}≦2$を示せ。
(2) $\displaystyle \int_0^1xf(x)dx≦\frac{2}{3}(\int_0^1f(x)dx)^2$を示せ。
(3) (2)の不等式において、等号が成立するときの$a$と$n$の値を求めよ。
この動画を見る 
PAGE TOP