福田の数学〜立教大学2021年理学部第1問(3)〜じゃんけんの確率 - 質問解決D.B.(データベース)

福田の数学〜立教大学2021年理学部第1問(3)〜じゃんけんの確率

問題文全文(内容文):
${\Large\boxed{1}}$(3)4人でじゃんけんを1回するとき、ちょうど2人が勝つ確率は$\boxed{\ \ ウ\ \ }$であり、
また、だれも勝たない確率は$\boxed{\ \ エ\ \ }$である。

2021立教大学理学部過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(3)4人でじゃんけんを1回するとき、ちょうど2人が勝つ確率は$\boxed{\ \ ウ\ \ }$であり、
また、だれも勝たない確率は$\boxed{\ \ エ\ \ }$である。

2021立教大学理学部過去問
投稿日:2021.10.04

<関連動画>

福田の1.5倍速演習〜合格する重要問題023〜名古屋大学2016年度理系数学第3問〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数B
指導講師: 福田次郎
問題文全文(内容文):
玉が2個ずつ入った2つの袋A,Bがあるとき、袋Bから玉を1個取り出して
袋Aに入れ、次に袋Aから玉を1個取り出して袋Bに入れる。という操作を
1回の操作と数えることにする。Aに赤玉が2個、Bに白玉が2個入った状態から
始め、この操作をn回繰り返した後に袋Bに入っている赤玉の個数がk個で
ある確率を$P_n(k)(n=1,2,3,\cdots)$とする。このとき、次の問いに答えよ。

(1)$k=0,1,2$に対する$P_1(k)$を求めよ。
(2)$k=0,1,2$に対する$P_n(k)$を求めよ。

2016名古屋大学理系過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年環境情報学部第3問〜多面体の面の色の変化と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} (1)各面が白色あるいは黒色で塗られた正四面体について、いずれか1つの面を等確率\\
\frac{1}{4}で選択し、選択した面を除いた3つの面の色を白色であれば黒色に、黒色であれば\\
白色に塗りなおす試行を繰り返す。正四面体の全てが白色の状態から開始するとき\\
(\textrm{a})2つの面が白色、2つの面が黒色になる最小の試行回数は\ \boxed{\ \ アイ\ \ }\ であり、\\
この試行回数で同状態が実現する確率は\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オカ\ \ }}である。\\
(\textrm{b})すべての面が黒色になる最小の試行回数は\boxed{\ \ キク\ \ }であり、この試行回数で\\
同状態が実現する確率は\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}である。\\
\\
(2)各面が白色あるいは黒色で塗られた立方体について、いずれか1つの面を等確率\frac{1}{6}で\\
選択し、選択した面を除いた5つの面の色を白色であれば黒色に、黒色であれば\\
白色に塗り直す試行をくり返す。立方体のすべての面が白色の状態から開始するとき\\
(\textrm{a})3つの面が白色、3つの面が黒色になる最小の試行回数は\boxed{\ \ スセ\ \ }であり、この\\
試行回数で同状態が実現する確率は\frac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}である。\\
(\textrm{b})すべての面が黒色になる最小の試行回数は\boxed{\ \ テト\ \ }であり、この試行回数で同状態\\
が実現する確率は\frac{\boxed{\ \ ナニヌ\ \ }}{\boxed{\ \ ネノハ\ \ }}である。
\end{eqnarray}
この動画を見る 

【数A】【場合の数と確率】円順列基本 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
・大人2人と子供8人が円形のテーブルに着席するとき、次のような並び方は何通りあるか。
(1)大人2人が隣り合う。
(2)大人2人が向かい合う。

・男子4人、女子4人が手をつないで輪を作るとき、次のような並び方は何通りあるか。
(1)女子4人が続いて並ぶ。
(2)男女が交互に並ぶ。

・8人の中から選ばれた5人が円形上に並ぶとき、並び方は何通りあるか。
この動画を見る 

ガチャ確率1% 100回以内に当たる確率 数学的に考えるギャンブラーの誤謬

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
当たる確率が毎回$\dfrac{1}{n}$,$n$回以内に当たる確率を求めよ.
この動画を見る 

福田のわかった数学〜高校1年生063〜場合の数(2)完全順列

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(2) 完全順列
1,2,3,4を1列に並べたものを$a_1a_2a_3a_4$とする。
$a_1\neq 1,a_2\neq 2,a_3\neq 3,a_4\neq 4$を満たす並べ方は何通りあるか。
この動画を見る 
PAGE TOP