線形代数:#2線形写像の判定 - 質問解決D.B.(データベース)

線形代数:#2線形写像の判定

問題文全文(内容文):
次の写像$\varsigma_i(i=1,2,3,4)$は線形代数であるか調べよ.

(1)
$\varsigma_1:IR^2\to IR$を
$\varsigma_1 \begin{pmatrix}
x \\
y
\end{pmatrix}=2x+3y$と定める.

(2)
$\varsigma_2:IR^2\to IR^2$を
$\varsigma_2 \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
x+1 \\
y-1
\end{pmatrix}$と定める.

(3)
$\varsigma_3:IR^2\to IR^2$を
$\varsigma_3 \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
\vert x\vert \\
y
\end{pmatrix}$と定める.

(3)
$\varsigma_4:IR^2\to IR^2$を
$\varsigma_4 \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
y \\
x
\end{pmatrix}$と定める.

単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
次の写像$\varsigma_i(i=1,2,3,4)$は線形代数であるか調べよ.

(1)
$\varsigma_1:IR^2\to IR$を
$\varsigma_1 \begin{pmatrix}
x \\
y
\end{pmatrix}=2x+3y$と定める.

(2)
$\varsigma_2:IR^2\to IR^2$を
$\varsigma_2 \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
x+1 \\
y-1
\end{pmatrix}$と定める.

(3)
$\varsigma_3:IR^2\to IR^2$を
$\varsigma_3 \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
\vert x\vert \\
y
\end{pmatrix}$と定める.

(3)
$\varsigma_4:IR^2\to IR^2$を
$\varsigma_4 \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
y \\
x
\end{pmatrix}$と定める.

投稿日:2021.05.04

<関連動画>

解けるように作られた9次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$x=2+3(2+3x^3)^3$
この動画を見る 

分からないので教えてください!ふさわしくない解は?

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x-\dfrac{4}{x}=\sqrt x+\dfrac{2}{\sqrt x}$
これを解け.
この動画を見る 

05高知県教員採用試験(数学:3-(2) 複素数)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}-(2)$
$z=1+\sqrt3 i$のとき,
$1+z+z^2+z^3+z^4+z^5$の値を求めよ.
この動画を見る 

数学オリンピック予選

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数#解と判別式・解と係数の関係#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
有理数係数の2次方程式
$ x^{2n}+a_1x^{2n-1}+a_2x^{2n-2}+$
$・・・・・・+a_{2n-1}x+a_{2n}=0$
の解はすべて$x^2+5x+7=0$の解にもなっている.
$a_1$の値を求めよ.
この動画を見る 

中国Jr 数学Olympic あっと驚く解法も

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#式と証明#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^5=1,x \neq 1$とするとき,
$\dfrac{x}{1+x^2}+\dfrac{x^2}{1+x^4}+\dfrac{x^3}{1+x^6}+\dfrac{x^4}{1+x^8}$の値を求めよ.

中国jr数学オリンピック過去問
この動画を見る 
PAGE TOP