数検準1級2次過去問【2020年12月】3番:合成関数 - 質問解決D.B.(データベース)

数検準1級2次過去問【2020年12月】3番:合成関数

問題文全文(内容文):
3⃣ $0 \leqq x \leqq 4$

$f(x)=\begin{eqnarray}
\left\{
\begin{array}{l}
x + 2 (0 \leqq x < 2) \\
-2x+8(2 \leqq x \leqq 4)
\end{array}
\right.
\end{eqnarray}$

(1)$f(f(x)) (0 \leqq x \leqq 4)$を求めよ。
(2)$f(f(x))=x$をみたすxをすべて求めよ。
単元: #数学検定・数学甲子園・数学オリンピック等#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
3⃣ $0 \leqq x \leqq 4$

$f(x)=\begin{eqnarray}
\left\{
\begin{array}{l}
x + 2 (0 \leqq x < 2) \\
-2x+8(2 \leqq x \leqq 4)
\end{array}
\right.
\end{eqnarray}$

(1)$f(f(x)) (0 \leqq x \leqq 4)$を求めよ。
(2)$f(f(x))=x$をみたすxをすべて求めよ。
投稿日:2020.12.13

<関連動画>

【高校数学】数Ⅲ-86 関数の連続性①

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数の極限#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
(1)次の不等式を満たす実数$x$の値の範囲を、区間で示す記号で示せ。

①$3\lt x \lt 7$

②$-2 \leqq x \leqq 0$

③$-4 \lt x \leqq 5$

④$x \geqq 12$

(2)次の関数が連続である区間を求めよ。

⑤$f(x)=\sqrt{-3x+2}$

⑥$f(x)=\dfrac{x^2+1}{x^2-3x+2}$

⑦$f(x)=\log_2 \vert x \vert$
この動画を見る 

福田のわかった数学〜高校3年生理系018〜極限(18)関数の極限、無理関数の極限(3)

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 無理関数の極限(3)
$\displaystyle \lim_{x \to \infty}(\sqrt{x^2+x+1}-$$\sqrt{x^2-x+1})$ を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題080〜京都大学2018年度理系第5問〜曲線の長さと極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 曲線y=$\log x$上の点A(t, $\log t$)における法線上に、点BをAB=1となるようにとる。ただしBのx座標はtより大きい。
(1)点Bの座標(u(t), v(t))を求めよ。また$\left(\frac{du}{dt}, \frac{dv}{dt}\right)$を求めよ。
(2)実数rは0<r<1を満たすとし、tがrから1まで動くときに点Aと点Bが描く曲線の長さをそれぞれ$L_1(r)$, $L_2(r)$とする。このとき、極限$\displaystyle\lim_{r \to +0}(L_1(r)-L_2(r))$を求めよ。

2018京都大学理系過去問
この動画を見る 

【高校数学】数Ⅲ-119 関数の極限④

アイキャッチ画像
単元: #関数と極限#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(関数の極値④)

①関数$f(x)=x^2e^{ax}$が$x=1$で極値をとるような定数$a$の値とそのときの極値を求めよ。

➁関数$f(x)=\frac{ax+b}{x^2+1}$が$x=1$で極大値$2$を持つような定数$a,b$を求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系001〜極限(1)

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(1)
$\displaystyle\lim_{n \to \infty}\displaystyle \frac{a_n+3}{a_n+1}=2$のとき
$\displaystyle\lim_{n \to \infty}a_n$を求めよ。
この動画を見る 
PAGE TOP