大学入試問題#810「難易度高めの良問」 #日本医科大学(2015) #区分求積法 僚太さんの紹介問題です - 質問解決D.B.(データベース)

大学入試問題#810「難易度高めの良問」 #日本医科大学(2015) #区分求積法 僚太さんの紹介問題です

問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } (\displaystyle \frac{1}{n+\displaystyle \frac{1}{2}}+\displaystyle \frac{1}{n+\displaystyle \frac{3}{2}}+\displaystyle \frac{1}{n+\displaystyle \frac{5}{2}}+・・・+\displaystyle \frac{2}{6n-1})$

出典:2015年日本医科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#日本医科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } (\displaystyle \frac{1}{n+\displaystyle \frac{1}{2}}+\displaystyle \frac{1}{n+\displaystyle \frac{3}{2}}+\displaystyle \frac{1}{n+\displaystyle \frac{5}{2}}+・・・+\displaystyle \frac{2}{6n-1})$

出典:2015年日本医科大学 入試問題
投稿日:2024.05.05

<関連動画>

大学入試問題#773「綺麗な良問」 青山学院大学(2019) #整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: ますただ
問題文全文(内容文):
素数$p.q$および自然数$n$に対し
$\displaystyle \frac{1}{p}+\displaystyle \frac{1}{q}+\displaystyle \frac{1}{pq}=\displaystyle \frac{1}{n}$
が成り立つような$(p,q,n)$の組をすべて求めよ

出典:2019年青山学院大学
この動画を見る 

福田の数学〜立教大学2021年理学部第4問〜極形式で与えられたzの計算

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$複素数$z$を$z=\cos\frac{2\pi}{7}+i\sin\frac{2\pi}{7}$とする。ただし、iは虚数単位とする。また、
$a=z+\frac{1}{z}, b=z^2+\frac{1}{z^2}, c=z^3+\frac{1}{z^3}$ とおく。次の問いに答えよ。
(1)$z^7$は有理数になる。その値を求めよ。
(2)$z+z^2+z^3+z^4+z^5+z^6$ は有理数になる。その値を求めよ。
(3)$A=a+b+c$ は有理数になる。その値を求めよ。
(4)$B=a^2+b^2+c^2$ は有理数になる。その値を求めよ。
(5)$C=ab+bc+ca$ は有理数になる。その値を求めよ。
(6)$D=a^3+b^3+c^3-3abc$ は有理数になる。その値を求めよ。

2021立教大学理工学部過去問
この動画を見る 

福田の数学〜浜松医科大学2023年医学部第2問〜定積分と極限とグラフ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#浜松医科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
医療で使われる技術の1つとして、磁気共鳴画像法 (MRI) がある。
MRI は画像の濃淡を表す関数、例えば

$M(x)=\displaystyle \lim_{ n \to \infty } I_n(x) $ (xは実数)

を用いて体内の様子を可視化する技術である。 ここで $I_n(x) $ は

$I_n(x) = \displaystyle \int_0^n e^{ -t }cos(tx)dt $
(n=1, 2, 3, ...)である。以下の問いに答えよ。

(1) 定積分$I_n(x) $を求めよ。

(2) $M(x)=\displaystyle \lim_{ n \to \infty } I_n(x) $ を求めよ

2023浜松医科大学医過去問


(3) 関数 $y= M(x)$ について、増減、極値、グラフの凹凸および変曲点を調べて、そのグラフをかけ。
この動画を見る 

島根大 4次関数 接線 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=m(x-1)$と$y=(x-1)(x+a)(x-a)^2$が接するときの$m$の値。
ただし、$a$は$0 \lt a \lt 1$の定数

出典:島根大学 過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年商学部第1問(1)〜対数の基本性質

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$
(1)正の実数$x,\ y$について、xとyの相加平均を5とする。また、4を底とする。
$x,\ y$の対数をそれぞれ$X,\ Y$としたとき、XとYの相加平均は1であるとする。
このとき、$x \lt y$とすると、$x=\boxed{\ \ ア\ \ }, y=\boxed{\ \ イ\ \ }$ である。

2021慶應義塾大学商学部過去問
この動画を見る 
PAGE TOP