大学入試問題#674「もう飽きてきました」日本大学医学部(2006) - 質問解決D.B.(データベース)

大学入試問題#674「もう飽きてきました」日本大学医学部(2006)

問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} \displaystyle \frac{x\ \sin\ x}{3+\sin^2\ x} dx$

出典:2006年日本大学医学部 入試問題
単元: #大学入試過去問(数学)#定積分#学校別大学入試過去問解説(数学)#日本大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} \displaystyle \frac{x\ \sin\ x}{3+\sin^2\ x} dx$

出典:2006年日本大学医学部 入試問題
投稿日:2023.12.11

<関連動画>

#千葉大学2023#定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
以下の定積分を解け。
$\displaystyle \int_{0}^{\frac{\pi}{6}} \displaystyle \frac{1}{\cos x} dx$

出典:2023年千葉大学
この動画を見る 

#奈良教育大学(2008) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#奈良教育大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{1}{(1+x^2)^2} dx$

出典:2008年奈良教育大学
この動画を見る 

福田の数学〜青山学院大学2022年理工学部第4問〜部分積分と定積分で表された関数

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
$ x \gt 0$を定義域とする関数f(x)が次の等式
$f(x)=\int_1^e\log(xt) f(t)dt+x$
を満たすとき、以下の問いに答えよ。
(1)$\int_1^e\log x dx$を求めよ。
(2)$\int_1^e(\log x)^2 dx$ を求めよ。
(3)$\int_1^ex\log x dx$を求めよ。
(4)$f(x)$を求めよ。

2022青山学院大学理工学部過去問
この動画を見る 

大学入試問題#372「初手が命」 兵庫県立大学2015 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫県立大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{3}}\displaystyle \frac{dx}{\cos^4x}$

出典:2015年兵庫県立大学 入試問題
この動画を見る 

福田の1.5倍速演習〜合格する重要問題025〜大阪大学2016年度理系数学第3問〜回転体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標平面において、原点Oを中心とする半径rの円と放物線$y=\sqrt2(x-1)^2$
は、ただ1つの共有点(a,b)をもつとする。
(1)a,b,rの値をそれぞれ求めよ。
(2)連立不等式
$a \leqq x \leqq 1, 0 \leqq y \leqq \sqrt2(x-1)^2, x^2+y^2 \geqq r^2$
の表す領域をx軸のまわりに1回転してできる回転体の体積を求めよ。

2016大阪大学理系過去問
この動画を見る 
PAGE TOP