高専数学 微積I #234(1)(2) 極座標表示の曲線の面積 - 質問解決D.B.(データベース)

高専数学 微積I #234(1)(2) 極座標表示の曲線の面積

問題文全文(内容文):
(1)曲線$r=\theta^2\left(0\leqq \theta \leqq \dfrac{\theta}{2}\right)$と
半直線$\theta=\dfrac{\theta}{2}$で囲まれた図形の面積を求めよ.

(2)曲線$r=\cos\theta+2(0\leqq \theta \leqq 2\pi)$で囲まれた
図形の面積を求めよ.
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
(1)曲線$r=\theta^2\left(0\leqq \theta \leqq \dfrac{\theta}{2}\right)$と
半直線$\theta=\dfrac{\theta}{2}$で囲まれた図形の面積を求めよ.

(2)曲線$r=\cos\theta+2(0\leqq \theta \leqq 2\pi)$で囲まれた
図形の面積を求めよ.
投稿日:2021.06.21

<関連動画>

高専数学 微積I #226(3) 媒介変数表示の面積

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$0\leqq t\leqq \dfrac{\pi}{2}$
曲線$x=\cos t,\cos 2t+1$
$x$軸,直線$x=1$で囲まれた図形の
面積$S$を求めよ.
この動画を見る 

高専数学 微積I #242(1) 媒介変数表示曲線の長さ

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
曲線$x=t^3,y=3t^2(0\leqq t\leqq 1)$の
長さ$\ell$を求めよ.
この動画を見る 

福田の数学〜大阪大学2022年理系第5問〜媒介変数表示のグラフで囲まれた面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
座標平面において、tを媒介変数として
$x=e^t\cos t+e^\pi, y=e^t\sin t (0 \leqq t \leqq \pi)$
と表される曲線をCとする。曲線Cとx軸で囲まれた部分の面積を求めよ。

2022大阪大学理系過去問
この動画を見る 

高専数学 微積I #226(1) 媒介変数表示の面積

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$0\leqq t\leqq 1$とする.
曲線$x=t^2,y=t^2-2t+1$
$x$軸,$y$軸で囲まれた図形の
面積$S$を求めよ.
この動画を見る 

福田のおもしろ数学262〜アルキメデスの螺旋の長さ

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
極方程式$r=θ(0 \leqq θ \leqqπ)$が表す曲線の長さを求めて下さい。
この動画を見る 
PAGE TOP