【高校数学】数Ⅲ-77 関数の極限② - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-77 関数の極限②

問題文全文(内容文):
次の等式が成り立つように、定数$a,b$の値を定めよ。

①$\displaystyle \lim_{n\to 2}\dfrac{x^2+ax+b}{x+2}=3$

②$\displaystyle \lim_{x\to 3}\dfrac{\sqrt{3x+a}-b}{x-3}=\dfrac{3}{8}$
単元: #関数と極限#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の等式が成り立つように、定数$a,b$の値を定めよ。

①$\displaystyle \lim_{n\to 2}\dfrac{x^2+ax+b}{x+2}=3$

②$\displaystyle \lim_{x\to 3}\dfrac{\sqrt{3x+a}-b}{x-3}=\dfrac{3}{8}$
投稿日:2018.03.08

<関連動画>

京都大 微分 合成関数 Mathematics Japanese university entrance exam Kyoto University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1993年 国立大学法人京都大学

$f(x)=x^3-3ax$

$(1)f(x)=t$が相違3実根をもつ$a,t$の条件
$(2)g(x)=f(f(x)),g(x)=0$
が相違9実根をもつ$a$の範囲
この動画を見る 

関西医科大学 #極限 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#関西医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to \pi } \displaystyle \frac{\sin\ x}{x^2-\pi^2}$を求めよ

出典:関西医科大学
この動画を見る 

福田の数学〜慶應義塾大学理工学部2025第2問〜分数関数の接線とベクトル計算

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{2}$

座標平面上の点$P(1,1)$と点$Q(1,-1)$および

曲線$C:y=\dfrac{1}{x-4}(x\gt 4)$を考える。

(1)曲線$C$の接線で点$Q$を通るものは存在しないことを

証明しなさい。

(2)曲線$C$の接線で点$P$を通るものを$l$とし、

$C$と$l$の接点を$A$とする。

このとき、$l$の方程式は$y=\boxed{キ}$であり、

点$A$の座標は$\boxed{ク}$である。

また、曲線$C$上の点の点$B$が

$\overrightarrow{PB}・\overrightarrow{PA}+\overrightarrow{PA}・\overrightarrow{AQ}+\overrightarrow{AB}・\overrightarrow{AQ}=-\dfrac{2}{3}$

を満たすとき、点$B$の座標は$\boxed{ケ}$である。

(3)$A,B$を(2)で定めた点とする。

正の数$t$に対し、曲線$C$上の点$R\left(t+4,\dfrac{1}{t}\right)$は

点$A$と異なるものとする。

線分$AR$を$2:1$に内分する点を$S$とし、

線分$BS$を$3:2$に内分する点を$T(u,v)$とするとき、

$u$を$t$の式で表すと$u=\boxed{コ}$である。

また、$uv$の値は$t-\boxed{サ}$のとき最小となる。

$2025$年慶應義塾大学理工学部過去問題
この動画を見る 

福田の1.5倍速演習〜合格する重要問題075〜浜松医科大学2017年度医学部第1問〜複素数の実部と虚部

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#関数と極限#複素数平面#図形への応用#数列の極限#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 以下の問いに答えよ。
(1)|z| ≦ |z-($\sqrt 3 + i$)|, |z-$\bar{z}$| ≦ 1および|z-$2i$| ≦ 2を同時にみたす複素数zに対応する点の領域を複素数平面上に図示せよ。
(2)(1)で得られた領域内の点に対応する複素数のうち、実部が最大となるものを$\alpha$、実部と虚部の和が最大となるものを$\beta$とするとき、$\alpha$と$\beta$を求めよ。
(3)次の式で定義される$w_n$の実部を$R_n$とするとき、無限級数$\displaystyle\sum_{n=1}^{\infty}R_n$の和を求めよ。
$w_n=\displaystyle\frac{\{1+(2-\sqrt 3)i\}(\sqrt 3+i)^{3(n-1)}}{2^{4(n-1)}}$ $(n=1,2,3,\dots)$

2017浜松医科大学医学部過去問
この動画を見る 

中学からの極限(基礎編)!~全国入試問題解法 #数学 #極限 #微分積分 #頭の体操

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \displaystyle \lim_{x \to \infty}\dfrac{5x^2+x+4}{x^2+2x+3}$を求めよ.
この動画を見る 
PAGE TOP