北海道大学 2種類の数字でできてるn桁の数字の個数 Japanese university entrance exam questions - 質問解決D.B.(データベース)

北海道大学 2種類の数字でできてるn桁の数字の個数 Japanese university entrance exam questions

問題文全文(内容文):
(1)2種類の数でできている4桁の数の個数

(2)n桁の場合

北海道大過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)2種類の数でできている4桁の数の個数

(2)n桁の場合

北海道大過去問
投稿日:2018.04.06

<関連動画>

福田の入試問題解説〜慶應義塾大学2022年医学部第2問〜確率と極限

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ (1)2n個の玉があり、そのうちk個は赤、他は白とする。ただしn>k>1である。\\
また袋A, Bが用意されているとする。\\
(1) 2n 個の玉からn個を無作為に選んで袋Aに入れ、残りを袋Bに入れる。袋A\\
にi個 (0 \leqq i \leqq k) の赤玉が入る確率を p(n, k, i) とおく。kとiを固定してn \to \infty\\
とするときの p(n, k, i) の極限値をkとiの式で表すと \lim_{n \to \infty} p(n, k, i) =\boxed{\ \ ア\ \ } \\
となる。またn>3のとき p(n, 3, 1) = \boxed{\ \ イ\ \ }である。\\
以下、n>k=3として、袋Aに赤玉が1個、袋Bに赤玉が2個入っている状態を\\
状態Sと呼ぶ。また袋A, Bのそれぞれから同時に玉を1個ずつ無作為に取り出し\\
て、玉が入っていた袋と逆の袋に入れる操作を操作Tと呼ぶ。\\
(2) 状態 Sから始めて操作を1回行った後で袋Aから玉を1個無作為に取り出す \\
とき、取り出した玉が赤玉である確率は\boxed{\ \ ウ\ \ }である。また、取り出した玉が赤玉\\
だったとき、操作 T終了後に袋Aに赤玉が2個入っていた条件つき確率は\boxed{\ \ エ\ \ }\\
である。\\
(3)状態Sから始めて操作Tを3回繰り返し行った後に、袋Aに赤玉が3個入っている\\
確率は\boxed{\ \ オ\ \ }である。\\
(4)状態Sから初めて袋A,Bのそれぞれから同時に玉を3個ずつ無作為に取り出して、\\
それらを玉が入っていた袋と逆の袋に入れた後に、袋Aに赤玉が3個入っている\\
確率は\boxed{\ \ カ\ \ }である。
\end{eqnarray}

2022慶應義塾大学医学部過去問
この動画を見る 

明治大 多項定理 場合の数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#式と証明#場合の数#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
明治大学過去問題
同類項は何種類か
$(x+y+z)^{88}$
この動画を見る 

これ解ける?

アイキャッチ画像
単元: #数学(中学生)#中2数学#数A#場合の数と確率#確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
コインを10回投げて表がぴったり5回出る確率は?
この動画を見る 

【高校数学】条件付き確率例題~これはできなヤバイ~ 2-8.5【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
男子46人,女子54人に試験を行ったところ、男子の合格者は30人、
女子の合格者は36人であった。
この100人の中から1人を選ぶとき次の確率を求めよ。
(a) 選んだ1人が女子であったとき、その人が合格している確率
(b) 選んだ1人が不合格者であったとき、その人が男子である確率

-----------------

2⃣
ある試行における事象$A,B$について、$P(A \cap B)=0.4,P(A)=0.8,P(B)=0.5$のとき
$P_{A}(B) P_{B}(A)$を求めよ。

-----------------

3⃣
8本のくじの中に当たりが3本ある。引いたくじをもとに戻さないで
A、Bの2人がこの順に1本ずつ引くとき、次の確率を求めよ。
(a) Aが当たり、Bがはずれる確率
(b) 2人とも当たる確率
(c) Bが当たる確率
(d) 1人だけが当たる確率
この動画を見る 

【数A】場合の数:青玉が1個、赤玉が6個、白玉が2個あります。これらの玉に糸を通して輪を作る方法は何通りあるか?

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
円順列?いいえ、数珠順列です!÷2をする必要がある??わかりやすく解説します!
この動画を見る 
PAGE TOP